From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist's approach to building language-aware products with applied machine learning.
You'll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you'll be equipped with practical methods to solve any number of complex real-world problems.
"Sinopsis" puede pertenecer a otra edición de este libro.
Benjamin Bengfort is a Data Scientist who lives inside the beltway but ignores politics (the normal business of DC) favoring technology instead. He is currently working to finish his PhD at the University of Maryland where he studies machine learning and distributed computing. His lab does have robots (though this field of study is not one he favors) and, much to his chagrin, they seem to constantly arm said robots with knives and tools; presumably to pursue culinary accolades. Having seen a robot attempt to slice a tomato, Benjamin prefers his own adventures in the kitchen where he specializes in fusion French and Guyanese cuisine as well as BBQ of all types. A professional programmer by trade, a Data Scientist by vocation, Benjamin's writing pursues a diverse range of subjects from Natural Language Processing, to Data Science with Python to analytics with Hadoop and Spark. Tony is the founder of District Data Labs and focuses on applied analytics for business strategy. He has published a book on practical data science, and has experience with hands-on education and data science curricula. Rebecca is a data scientist at the U.S. Department of Commerce Data Service. She specializes in data visualization for machine learning and has given several talks related to improving the model selection process with visualization.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 30,72 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,39 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Acceptable. Item in acceptable condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00087931609
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781491963043
Cantidad disponible: 3 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781491963043
Cantidad disponible: 3 disponibles
Librería: Speedyhen, London, Reino Unido
Condición: NEW. Nº de ref. del artículo: NW9781491963043
Cantidad disponible: 3 disponibles
Librería: LiLi - La Liberté des Livres, CANEJAN, Francia
Condición: very good. edition 2018. l'article peut presenter de tres legers signes d'usure, petites rayures ou imperfections esthetiques. vendeur professionnel; envoi soigne en 24/48h. Nº de ref. del artículo: 2504230007399
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781491963043_new
Cantidad disponible: 6 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. This practical guide shows programmers and data scientists who have an intermediate-level understanding of Python and a basic understanding of machine learning and natural language processing how to become more proficient in these two exciting areas of data science. Num Pages: 250 pages. BIC Classification: UN. Category: (P) Professional & Vocational. Dimension: 250 x 150 x 15. Weight in Grams: 666. . 2018. 1st Edition. Paperback. . . . . Nº de ref. del artículo: V9781491963043
Cantidad disponible: 3 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 726. Nº de ref. del artículo: B9781491963043
Cantidad disponible: 3 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 28170379-n
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 28170379-n
Cantidad disponible: 5 disponibles