"Boos and Stefanski have written a superb text that fills a void in the Mathematical Statistics genre, an area replete with texts that are either too advanced or too elementary for many statistics graduate students embarking on a research career. To the extent possible, the authors build on advanced calculus and Riemann-Stieltjes integration rather than measure theory and Lebesgue integration to define and support concepts. The authors have mindfully synthesized a wide range of fundamental statistical principles into a single volume and written in a style accessible to first- or second-year statistics graduate students. My colleagues and I have taught from this textbook or earlier iterations for the past six years and students consistently gave the text high marks for its clarity, instructive examples and end-of-chapter exercises. Instructors will also appreciate a chapter dedicated to Monte Carlo simulation studies and presenting numerical results; I have referred students to this chapter on multiple occasions. Essential Statistical Inference is an excellent reference for researchers and an outstanding instructional tool for graduate-level educators." (Brent A. Johnson, Associate Professor, Department of Biostatistics and Bioinformatics, Emory University)
"This modern treatment of graduate-level statistical inference is exceptionally well written. By thoroughly covering modern statistical topics including key computation tools in the same volume as classical material, the authors have produced the ideal textbook for a second-year inference course. The problem-motivated approach makes the book especially attractive to teach from with insightful connections highlighted between topics and across chapters. Through the marriage of historical descriptions of central questions in classical statistics with Maple and R code for examples and experiments, this text is certain to become a widely used reference book." (Taki Shinohara, Assistant Professor of Biostatistics, University of Pennsylvania)
A superb resource on statistical inference for researchers or students, this book has R code throughout, including in sample problems, and an appendix of derived notation and formulae. It covers core topics as well as modern aspects such as M-estimation.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 67,59 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Valuable text for graduate students and reference for researchersContains R code throughout the text and in sample problems Includes unique page references to equation displaysDennis Boos and Len Stefanski are professors in the Depa. Nº de ref. del artículo: 447929900
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware - This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems.An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. 588 pp. Englisch. Nº de ref. del artículo: 9781489987938
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is for students and researchers who have had a first year graduate level mathematical statistics course. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics like M-estimation, the jackknife, and the bootstrap. R code is woven throughout the text, and there are a large number of examples and problems.An important goal has been to make the topics accessible to a wide audience, with little overt reliance on measure theory. A typical semester course consists of Chapters 1-6 (likelihood-based estimation and testing, Bayesian inference, basic asymptotic results) plus selections from M-estimation and related testing and resampling methodology.Dennis Boos and Len Stefanski are professors in the Department of Statistics at North Carolina State. Their research has been eclectic, often with a robustness angle, although Stefanski is also known for research concentrated on measurement error, including a co-authored book on non-linear measurement error models. In recent years the authors have jointly worked on variable selection methods. Nº de ref. del artículo: 9781489987938
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 23411387-n
Cantidad disponible: Más de 20 disponibles
Librería: Pangea, Louisville, KY, Estados Unidos de America
paperback. Condición: Good. May contain marks and or highlighting. Used items are NOT guaranteed to include components, i.e. CDs, Access codes, etc. Ships from our Kentucky facility. Ships same day if ordered before 1 PM EST, Monday - Friday. Contact us with any questions! Nº de ref. del artículo: 264217-1
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 23411387-n
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 588 pages. 9.25x6.10x1.33 inches. In Stock. Nº de ref. del artículo: zk1489987932
Cantidad disponible: 1 disponibles
Librería: dsmbooks, Liverpool, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: D7F7-3-M-1489987932-6
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 23411387
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 23411387
Cantidad disponible: Más de 20 disponibles