This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.
The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a "develop from scratch" method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, you’ll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide. After completing this book, you will have a firm grasp of Bayesian optimization techniques, which you’ll be able to put into practice in your own machine learning models.
"Sinopsis" puede pertenecer a otra edición de este libro.
Peng Liu is an assistant professor of quantitative finance (practice) at Singapore Management University and an adjunct researcher at the National University of Singapore. He holds a Ph.D. in statistics from the National University of Singapore and has ten years of working experience as a data scientist across the banking, technology, and hospitality industries
This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.
The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a “develop from scratch” method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, you’ll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide.After completing this book, you will have a firm grasp of Bayesian optimization techniques, which you’ll be able to put into practice in your own machine learning models.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Goodbooks Company, Springdale, AR, Estados Unidos de America
Condición: good. Has a sturdy binding with some shelf wear. May have some markings or highlighting. Used copies may not include access codes or Cd's. Slight bending may be present. Nº de ref. del artículo: GBV.1484290623.G
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 45776611-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Bayesian Optimization: Theory and Practice Using Python. Book. Nº de ref. del artículo: BBS-9781484290620
Cantidad disponible: 5 disponibles
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
Condición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Nº de ref. del artículo: OTF-S-9781484290620
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45776611
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781484290620
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a develop from scratch method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, youll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide. After completingthis book, you will have a firm grasp of Bayesian optimization techniques, which youll be able to put into practice in your own machine learning models.What You Will LearnApply Bayesian Optimization to build better machine learning modelsUnderstand and research existing and new Bayesian Optimization techniquesLeverage high-performance libraries such as BoTorch, which offer you the ability to dig into and edit the inner workingDig into the inner workings of common optimization algorithms used to guide the search process in Bayesian optimizationWho This Book Is ForBeginner to intermediate level professionals in machine learning, analytics or other roles relevant in data science. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781484290620
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 45776611
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 45776611-n
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 249 pages. 10.00x7.01x0.53 inches. In Stock. Nº de ref. del artículo: x-1484290623
Cantidad disponible: 2 disponibles