Artículos relacionados a Advanced Forecasting with Python: With State-of-the-Art-Mode...

Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR - Tapa blanda

 
9781484271490: Advanced Forecasting with Python: With State-of-the-Art-Models Including LSTMs, Facebook’s Prophet, and Amazon’s DeepAR

Sinopsis

Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook’s open-source Prophet model, and Amazon’s DeepAR model.

Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models.

Each of the models presented in this book is covered in depth, with an intuitive simple explanation ofthe model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.

Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. 

What You Will Learn

  • Carry out forecasting with Python
  • Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques
  • Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing
  • Select the right model for the right use case

Who This Book Is For

The advanced nature of the later chapters makes the book relevant for appliedexperts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models.



"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Joos is a data scientist, with over five years of industry experience in developing machine learning tools, of which a large part is forecasting models. He currently works at Disneyland Paris where he develops machine learning for a variety of tools. His experience in writing and teaching have motivated him to make this book on advanced forecasting with Python.


De la contraportada

Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook’s open-source Prophet model, and Amazon’s DeepAR model.

Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models.

Each of the models presented in this book is covered in depth, with an intuitive simple explanation of the model, amathematical transcription of the idea, and Python code that applies the model to an example data set.

Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. 

You will:

  • Carry out forecasting with Python
  • Mathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniques
  • Gain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testing
  • Select the right model for the right use case

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
Dispatched, from the UK, within...
Ver este artículo

EUR 5,23 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 10,73 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Advanced Forecasting with Python: With State-of-the-Art-Mode...

Imagen de archivo

Korstanje, Joos
Publicado por Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Antiguo o usado paperback

Librería: Reuseabook, Gloucester, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Used; Good. Dispatched, from the UK, within 48 hours of ordering. This book is in good condition but will show signs of previous ownership. Please expect some creasing to the spine and/or minor damage to the cover. Nº de ref. del artículo: CHL10458807

Contactar al vendedor

Comprar usado

EUR 41,35
Convertir moneda
Gastos de envío: EUR 5,23
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Korstanje, Joos
Publicado por Apress 8/17/2021, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuevo Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback or Softback. Condición: New. Advanced Forecasting with Python: With State-Of-The-Art-Models Including Lstms, Facebook's Prophet, and Amazon's Deepar 1.32. Book. Nº de ref. del artículo: BBS-9781484271490

Contactar al vendedor

Comprar nuevo

EUR 36,45
Convertir moneda
Gastos de envío: EUR 10,73
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Korstanje, Joos
Publicado por Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781484271490

Contactar al vendedor

Comprar nuevo

EUR 40,69
Convertir moneda
Gastos de envío: EUR 6,87
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Joos Korstanje
Publicado por APress, US, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuevo Paperback Original o primera edición

Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's DeepAR model.Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation ofthe model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will LearnCarry out forecasting with PythonMathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniquesGain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testingSelect the right model for the right use case Who This Book Is ForThe advanced nature of the later chapters makes the book relevant for appliedexperts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models. Nº de ref. del artículo: LU-9781484271490

Contactar al vendedor

Comprar nuevo

EUR 47,02
Convertir moneda
Gastos de envío: EUR 3,44
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Korstanje, Joos
Publicado por Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 43060686-n

Contactar al vendedor

Comprar nuevo

EUR 34,11
Convertir moneda
Gastos de envío: EUR 17,17
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Joos Korstanje
Publicado por APress, US, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuevo Paperback Original o primera edición

Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's DeepAR model.Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation ofthe model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will LearnCarry out forecasting with PythonMathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniquesGain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testingSelect the right model for the right use case Who This Book Is ForThe advanced nature of the later chapters makes the book relevant for appliedexperts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models. Nº de ref. del artículo: LU-9781484271490

Contactar al vendedor

Comprar nuevo

EUR 48,88
Convertir moneda
Gastos de envío: EUR 3,44
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Korstanje, Joos
Publicado por Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43060686

Contactar al vendedor

Comprar usado

EUR 38,21
Convertir moneda
Gastos de envío: EUR 17,17
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Joos Korstanje
Publicado por APress, US, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuevo Paperback Original o primera edición

Librería: Rarewaves.com UK, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. Cover all the machine learning techniques relevant for forecasting problems, ranging from univariate and multivariate time series to supervised learning, to state-of-the-art deep forecasting models such as LSTMs, recurrent neural networks, Facebook's open-source Prophet model, and Amazon's DeepAR model.Rather than focus on a specific set of models, this book presents an exhaustive overview of all the techniques relevant to practitioners of forecasting. It begins by explaining the different categories of models that are relevant for forecasting in a high-level language. Next, it covers univariate and multivariate time series models followed by advanced machine learning and deep learning models. It concludes with reflections on model selection such as benchmark scores vs. understandability of models vs. compute time, and automated retraining and updating of models. Each of the models presented in this book is covered in depth, with an intuitive simple explanation ofthe model, a mathematical transcription of the idea, and Python code that applies the model to an example data set.Reading this book will add a competitive edge to your current forecasting skillset. The book is also adapted to those who have recently started working on forecasting tasks and are looking for an exhaustive book that allows them to start with traditional models and gradually move into more and more advanced models. What You Will LearnCarry out forecasting with PythonMathematically and intuitively understand traditional forecasting models and state-of-the-art machine learning techniquesGain the basics of forecasting and machine learning, including evaluation of models, cross-validation, and back testingSelect the right model for the right use case Who This Book Is ForThe advanced nature of the later chapters makes the book relevant for appliedexperts working in the domain of forecasting, as the models covered have been published only recently. Experts working in the domain will want to update their skills as traditional models are regularly being outperformed by newer models. Nº de ref. del artículo: LU-9781484271490

Contactar al vendedor

Comprar nuevo

EUR 53,30
Convertir moneda
Gastos de envío: EUR 2,31
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Joos Korstanje
Publicado por APress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuevo PAP

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: GB-9781484271490

Contactar al vendedor

Comprar nuevo

EUR 54,03
Convertir moneda
Gastos de envío: EUR 4,27
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

KORSTANJE, JOOS
Publicado por Apress, 2021
ISBN 10: 1484271491 ISBN 13: 9781484271490
Nuevo Tapa blanda

Librería: Speedyhen, London, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: NEW. Nº de ref. del artículo: NW9781484271490

Contactar al vendedor

Comprar nuevo

EUR 49,14
Convertir moneda
Gastos de envío: EUR 9,23
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 21 copia(s) de este libro

Ver todos los resultados de su búsqueda