Artículos relacionados a Quantum Machine Learning: An Applied Approach: The...

Quantum Machine Learning: An Applied Approach: The Theory and Application of Quantum Machine Learning in Science and Industry - Tapa blanda

 
9781484270974: Quantum Machine Learning: An Applied Approach: The Theory and Application of Quantum Machine Learning in Science and Industry

Sinopsis

Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research.

The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost.

Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms.

The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author's active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples.


What You will Learn

  • Understand and explore quantum computing and quantum machine learning, and their application in science and industry
  • Explore various data training models utilizing quantum machine learning algorithms and Python libraries
  • Get hands-on and familiar with applied quantum computing, including freely available cloud-based access
  • Be familiar with techniques for training and scaling quantum neural networks
  • Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive


Who This Book Is For

Data scientists, machine learning professionals, and researchers


"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Santanu Ganguly has been working in the fields of quantum technologies, cloud computing, data networking, and security (on research, design, and delivery) for over 21 years. He works in Switzerland and the United Kingdom (UK) for various Silicon Valley vendors and ISPs. He has two postgraduate degrees (one in mathematics and another in observational astrophysics), and research experience and publications in nanoscale photonics and laser spectroscopy. He is currently leading global projects out of the UK related to quantum communication and machine learning, among other technologies.

De la contraportada

Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research.

The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost.

Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms.

The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author’s active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples.

You will:

  • Understand and explore quantum computing and quantum machine learning, and their application in science and industry
  • Explore various data training models utilizing quantum machine learning algorithms and Python libraries
  • Get hands-on and familiar with applied quantum computing, including freely available cloud-based access
  • Be familiar with techniques for training and scaling quantum neural networks
  • Gain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep dive



"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,17 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

GRATIS gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Quantum Machine Learning: An Applied Approach: The...

Edición internacional
Edición internacional

Ganguly
Publicado por Apress, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Tapa blanda
Edición internacional

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-208210

Contactar al vendedor

Comprar nuevo

EUR 40,13
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ganguly, Santanu
Publicado por Apress 8/12/2021, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Paperback or Softback

Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback or Softback. Condición: New. Quantum Machine Learning: An Applied Approach: The Theory and Application of Quantum Machine Learning in Science and Industry 2.16. Book. Nº de ref. del artículo: BBS-9781484270974

Contactar al vendedor

Comprar nuevo

EUR 45,93
Convertir moneda
Gastos de envío: EUR 10,73
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Ganguly, Santanu
Publicado por Apress, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781484270974

Contactar al vendedor

Comprar nuevo

EUR 51,30
Convertir moneda
Gastos de envío: EUR 6,87
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ganguly, Santanu
Publicado por Apress, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 43060557-n

Contactar al vendedor

Comprar nuevo

EUR 43,39
Convertir moneda
Gastos de envío: EUR 17,17
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Ganguly, Santanu
Publicado por Apress, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Tapa blanda

Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-30705

Contactar al vendedor

Comprar nuevo

EUR 62,81
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Ganguly, Santanu
Publicado por Apress, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Tapa blanda

Librería: SMASS Sellers, IRVING, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Nº de ref. del artículo: ASNT3-30705

Contactar al vendedor

Comprar nuevo

EUR 64,84
Convertir moneda
Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ganguly, Santanu
Publicado por Apress, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 43060557

Contactar al vendedor

Comprar usado

EUR 48,14
Convertir moneda
Gastos de envío: EUR 17,17
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Santanu Ganguly
Publicado por APress, US, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Paperback Original o primera edición

Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research.The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost.Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms.The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author's active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples.What You will LearnUnderstand and explore quantum computing and quantum machine learning, and their application in science and industryExplore variousdata training models utilizing quantum machine learning algorithms and Python librariesGet hands-on and familiar with applied quantum computing, including freely available cloud-based accessBe familiar with techniques for training and scaling quantum neural networksGain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep diveWho This Book Is ForData scientists, machine learning professionals, and researchers. Nº de ref. del artículo: LU-9781484270974

Contactar al vendedor

Comprar nuevo

EUR 62,23
Convertir moneda
Gastos de envío: EUR 3,44
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Ganguly, Santanu
Publicado por Apress, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26384681675

Contactar al vendedor

Comprar nuevo

EUR 56,85
Convertir moneda
Gastos de envío: EUR 9,88
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Santanu Ganguly
Publicado por APress, US, 2021
ISBN 10: 1484270975 ISBN 13: 9781484270974
Nuevo Paperback Original o primera edición

Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: New. 1st ed. Know how to adapt quantum computing and machine learning algorithms. This book takes you on a journey into hands-on quantum machine learning (QML) through various options available in industry and research.The first three chapters offer insights into the combination of the science of quantum mechanics and the techniques of machine learning, where concepts of classical information technology meet the power of physics. Subsequent chapters follow a systematic deep dive into various quantum machine learning algorithms, quantum optimization, applications of advanced QML algorithms (quantum k-means, quantum k-medians, quantum neural networks, etc.), qubit state preparation for specific QML algorithms, inference, polynomial Hamiltonian simulation, and more, finishing with advanced and up-to-date research areas such as quantum walks, QML via Tensor Networks, and QBoost.Hands-on exercises from open source libraries regularly used today in industry and research are included, such as Qiskit, Rigetti's Forest, D-Wave's dOcean, Google's Cirq and brand new TensorFlow Quantum, and Xanadu's PennyLane, accompanied by guided implementation instructions. Wherever applicable, the book also shares various options of accessing quantum computing and machine learning ecosystems as may be relevant to specific algorithms.The book offers a hands-on approach to the field of QML using updated libraries and algorithms in this emerging field. You will benefit from the concrete examples and understanding of tools and concepts for building intelligent systems boosted by the quantum computing ecosystem. This work leverages the author's active research in the field and is accompanied by a constantly updated website for the book which provides all of the code examples.What You will LearnUnderstand and explore quantum computing and quantum machine learning, and their application in science and industryExplore variousdata training models utilizing quantum machine learning algorithms and Python librariesGet hands-on and familiar with applied quantum computing, including freely available cloud-based accessBe familiar with techniques for training and scaling quantum neural networksGain insight into the application of practical code examples without needing to acquire excessive machine learning theory or take a quantum mechanics deep diveWho This Book Is ForData scientists, machine learning professionals, and researchers. Nº de ref. del artículo: LU-9781484270974

Contactar al vendedor

Comprar nuevo

EUR 64,24
Convertir moneda
Gastos de envío: EUR 3,44
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 18 copia(s) de este libro

Ver todos los resultados de su búsqueda