This updated second edition offers a guided tour of machine learning algorithms and architecture design. It provides real-world applications of intelligent systems in healthcare and covers the challenges of managing big data.
The book has been updated with the latest research in massive data, machine learning, and AI ethics. It covers new topics in managing the complexities of massive data, and provides examples of complex machine learning models. Updated case studies from global healthcare providers showcase the use of big data and AI in the fight against chronic and novel diseases, including COVID-19. The ethical implications of digital healthcare, analytics, and the future of AI in population health management are explored. You will learn how to create a machine learning model, evaluate its performance, and operationalize its outcomes within your organization. Case studies from leading healthcare providers cover scaling global digital services. Techniques are presented to evaluate the efficacy, suitability, and efficiency of AI machine learning applications through case studies and best practice, including the Internet of Things.
You will understand how machine learning can be used to develop health intelligence-with the aim of improving patient health, population health, and facilitating significant care-payer cost savings.
What You Will Learn
"Sinopsis" puede pertenecer a otra edición de este libro.
Arjun Panesar is the founder of Diabetes Digital Media (DDM), the world’s largest diabetes community and provider of evidence-based digital health interventions. He holds an honors degree (MEng) in computing and artificial intelligence from Imperial College, London. He has a decade of experience in big data and affecting user outcomes, and leads the development of intelligent, evidence-based digital health interventions that harness the power of big data and machine learning to provide precision patient care to patients, health agencies, and governments worldwide.
Arjun’s work has received international recognition and was featured by the BBC, Forbes, New Scientist, and The Times. He has received innovation, business, and technology awards, including being named the top app for prevention of type 2 diabetes.
Arjun is an advisor to the Information School, at the University of Sheffield, Fellow to the NHS Innovation Accelerator, and was recognized by Imperial College as an Emerging Leader in 2020 for his contribution and impact to society.
This updated second edition offers a guided tour of machine learning algorithms and architecture design. It provides real-world applications of intelligent systems in healthcare and covers the challenges of managing big data.
The book has been updated with the latest research in massive data, machine learning, and AI ethics. It covers new topics in managing the complexities of massive data, and provides examples of complex machine learning models. Updated case studies from global healthcare providers showcase the use of big data and AI in the fight against chronic and novel diseases, including COVID-19. The ethical implications of digital healthcare, analytics, and the future of AI in population health management are explored. You will learn how to create a machine learning model, evaluate its performance, and operationalize its outcomes within your organization. Case studies from leading healthcare providers cover scaling global digital services. Techniques are presentedto evaluate the efficacy, suitability, and efficiency of AI machine learning applications through case studies and best practice, including the Internet of Things.
You will understand how machine learning can be used to develop health intelligence–with the aim of improving patient health, population health, and facilitating significant care-payer cost savings.
You will:
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,63 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 10,51 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 2 working days. 831. Nº de ref. del artículo: B9781484265369
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes 1.67. Book. Nº de ref. del artículo: BBS-9781484265369
Cantidad disponible: 5 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781484265369
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9781484265369
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 42289377-n
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 42289377
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Intermediate user level|Offers healthcare professionals a tech jargon-free understanding of the applications of machine learning in healthcareCovers the ethics of data and learning governance and the hurdles that require . Nº de ref. del artículo: 403911137
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 42289377-n
Cantidad disponible: 3 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781484265369_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This updated second edition offers a guided tour of machine learning algorithms and architecture design. It provides real-world applications of intelligent systems in healthcare and covers the challenges of managing big data.The book has been updated with the latest research in massive data, machine learning, and AI ethics. It covers new topics in managing the complexities of massive data, and provides examples of complex machine learning models. Updated case studies from global healthcare providers showcase the use of big data and AI in the fight against chronic and novel diseases, including COVID-19. The ethical implications of digital healthcare, analytics, and the future of AI in population health management are explored. You will learn how to create a machine learning model, evaluate its performance, and operationalize its outcomes within your organization. Case studies from leading healthcare providers cover scaling global digital services. Techniques are presented to evaluate the efficacy, suitability, and efficiency of AI machine learning applications through case studies and best practice, including the Internet of Things.You will understand how machine learning can be used to develop health intelligence-with the aim of improving patient health, population health, and facilitating significant care-payer cost savings.What You Will LearnUnderstand key machine learning algorithms and their use and implementation within healthcareImplement machine learning systems, such as speech recognition and enhanced deep learning/AIManage the complexities of massive dataBe familiar with AI and healthcare best practices, feedback loops, and intelligent agentsWho This Book Is ForHealth care professionalsinterested in how machine learning can be used to develop health intelligence - with the aim of improving patient health, population health and facilitating significant care-payer cost savings. Nº de ref. del artículo: 9781484265369
Cantidad disponible: 1 disponibles