Artículos relacionados a Pro Machine Learning Algorithms: A Hands-On Approach...

Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R - Tapa blanda

 
9781484235652: Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R

Esta edición ISBN ya no está disponible.

Sinopsis

Chapter 1:  Basic statistics
Chapter Goal: Build the statistical foundation for machine learning 
No of pages    : 20
Sub -Topics
1.      Introduction to various statistical functions
1.      Introduction to distributions
2.      Hypothesis testing
3.      Case classes

Chapter 2: Linear regression 
Chapter Goal: Help the reader master linear regression with the theory & practical concepts
No of pages: 25
Sub - Topics   
1.      Introduction to regression  
2.      Least squared error
3.      Implementing linear regression in Excel & R & Python
4.      Measuring error

Chapter 3: Logistic regression
Chapter Goal: Help the reader master logistic regression with the theory & practical concepts 
No of pages: 25
Sub - Topics:  
1.      Introduction to logistic regression  
2.      Cross entropy error
3.      Implementing logistic regression in Excel & R & Python
4.      Area under the curve calculation

Chapter 4:  Decision tree
Chapter Goal: Help the reader master decision tree with the theory & practical concepts 
No of pages: 40
Sub - Topics: 
1.      Introduction to decision tree  
2.      Information gain
3.      Decision tree for classification & regression
4.      Implementing decision tree in Excel & R & Python
5.      Measuring error
Chapter 5: Random forest
Chapter Goal: Help the reader master random forests with the theory & practical concepts 
No of pages: 15
Sub - Topics: 
1.      Moving from decision tree to random forests
2.      Implement random forest in R & Python using decision tree functionalities
 
Chapter 6: GBM
Chapter Goal: Help the reader master GBM with the theory & practical concepts 
No of pages: 20
Sub - Topics: 
 
1.      Understanding gradient boosting process
2.      Difference between gradient boost & adaboost
3.      Implement GBM in R & Python using decision tree functionalities
 
Chapter 7: Neural network
Chapter Goal: Help the reader master neural network with the theory & practical concepts
No of pages: 30
Sub - Topics: 
1.      Forward propagation
2.      Backward propagation
3.      Impact of epochs and learning rate
4.      Implement Neural network in Excel, R & Python
 
Chapter 8: Convolutional neural network
Chapter Goal: Help the reader master CNN with the theory & practical concepts
No of pages: 30
Sub - Topics: 
1.      Moving from NN to CNN
2.      Key parameters within CNN
3.      Implement CNN in Excel & Python 

Chapter 9: RNN
Chapter Goal: Help the reader master RNN with the theory & practical concepts
No of pages: 25
Sub - Topics: 
 
1.      Need for RNN
2.      Key variations of RNN
3.  &nb

"Sinopsis" puede pertenecer a otra edición de este libro.

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9781484235638: Pro Machine Learning Algorithms: A Hands-On Approach to Implementing Algorithms in Python and R

Edición Destacada

ISBN 10:  1484235630 ISBN 13:  9781484235638
Editorial: Apress, 2018
Tapa blanda