We review the history of elliptic curves and show that it is possible to form a group law using the points on an elliptic curve over some field L. We review various methods for computing the order of this group when L is finite, including the complex multiplication method. We then define and examine the properties of elliptic pairs, lists, and cycles, which are related to the notions of amicable pairs and aliquot cycles for elliptic curves, defined by Silverman and Stange. We then use the properties of elliptic pairs to prove that aliquot cycles of length greater than two exist for elliptic curves with complex multiplication, contrary to an assertion of Silverman and Stange, proving that such cycles only occur for elliptic curves of j-invariant equal to zero, and they always have length six. We explore the connection between elliptic pairs and several other conjectures, and propose limitations on the lengths of elliptic lists.
"Sinopsis" puede pertenecer a otra edición de este libro.
We review the history of elliptic curves and show that it is possible to form a group law using the points on an elliptic curve over some field L. We review various methods for computing the order of this group when L is finite, including the complex multiplication method. We then define and examine the properties of elliptic pairs, lists, and cycles, which are related to the notions of amicable pairs and aliquot cycles for elliptic curves, defined by Silverman and Stange. We then use the properties of elliptic pairs to prove that aliquot cycles of length greater than two exist for elliptic curves with complex multiplication, contrary to an assertion of Silverman and Stange, proving that such cycles only occur for elliptic curves of j-invariant equal to zero, and they always have length six. We explore the connection between elliptic pairs and several other conjectures, and propose limitations on the lengths of elliptic lists.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,02 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 6,81 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Print on Demand. Nº de ref. del artículo: I-9781483902326
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 249. Nº de ref. del artículo: C9781483902326
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 37414867
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 37414867-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 37414867
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 37414867-n
Cantidad disponible: Más de 20 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. We review the history of elliptic curves and show that it is possible to form a group law using the points on an elliptic curve over some field L. We review various methods for computing the order of this group when L is finite, including the complex multiplication method. We then define and examine the properties of elliptic pairs, lists, and cycles, which are related to the notions of amicable pairs and aliquot cycles for elliptic curves, defined by Silverman and Stange. We then use the properties of elliptic pairs to prove that aliquot cycles of length greater than two exist for elliptic curves with complex multiplication, contrary to an assertion of Silverman and Stange, proving that such cycles only occur for elliptic curves of j-invariant equal to zero, and they always have length six. We explore the connection between elliptic pairs and several other conjectures, and propose limitations on the lengths of elliptic lists. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9781483902326
Cantidad disponible: 1 disponibles