Line Integral Methods for Conservative Problems explains the numerical solution of differential equations within the framework of geometric integration, a branch of numerical analysis that devises numerical methods able to reproduce (in the discrete solution) relevant geometric properties of the continuous vector field. The book focuses on a large set of differential systems named conservative problems, particularly Hamiltonian systems.
Assuming only basic knowledge of numerical quadrature and Runge–Kutta methods, this self-contained book begins with an introduction to the line integral methods. It describes numerous Hamiltonian problems encountered in a variety of applications and presents theoretical results concerning the main instance of line integral methods: the energy-conserving Runge–Kutta methods, also known as Hamiltonian boundary value methods (HBVMs). The authors go on to address the implementation of HBVMs in order to recover in the numerical solution what was expected from the theory. The book also covers the application of HBVMs to handle the numerical solution of Hamiltonian partial differential equations (PDEs) and explores extensions of the energy-conserving methods.
With many examples of applications, this book provides an accessible guide to the subject yet gives you enough details to allow concrete use of the methods. MATLAB codes for implementing the methods are available online.
"Sinopsis" puede pertenecer a otra edición de este libro.
Luigi Brugnano is a full professor of numerical analysis and chairman of the mathematics courses in the Department of Mathematics and Informatics at the University of Firenze. He is a member of several journal editorial boards. His research interests include matrix conditioning/preconditioning, parallel computing, computational fluid dynamics, numerical methods, iterative methods, geometric integration, and mathematical modeling and software.
Felice Iavernaro is an associate professor of numerical analysis in the Department of Mathematics at the University of Bari. His primary interests include the design and implementation of efficient methods for the numerical solution of differential equations, particularly for the simulation of dynamical systems with geometric properties.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 5,22 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 17,26 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Reuseabook, Gloucester, GLOS, Reino Unido
Hardcover. Condición: Used; Very Good. Dispatched, from the UK, within 48 hours of ordering. Though second-hand, the book is still in very good shape. Minimal signs of usage may include very minor creasing on the cover or on the spine. Nº de ref. del artículo: CHL7152839
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Condición: New. Nº de ref. del artículo: 6666-TNFPD-9781482263848
Cantidad disponible: 5 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA773148226384X6
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 240. Nº de ref. del artículo: 26373775730
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 240. Nº de ref. del artículo: 372302509
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Luigi Brugnano is a full professor of numerical analysis and chairman of the mathematics courses in the Department of Mathematics and Informatics at the University of Firenze. He is a member of several journal editorial boards. His resea. Nº de ref. del artículo: 35211377
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 240. Nº de ref. del artículo: 18373775736
Cantidad disponible: 4 disponibles