This book studies when a prime $p$ can be written in the form $x^{2} + ny^{2}$. It begins at an elementary level with results of Fermat and Euler and then discusses the work of Lagrange, Legendre and Gauss on quadratic reciprocity and the genus theory of quadratic forms. After exploring cubic and biquadratic reciprocity, the pace quickens with the introduction of algebraic number fields and class field theory. This leads to the concept of ring class field and a complete but abstract solution of $p = x^{2} + ny^{2}$. To make things more concrete, the book introduces complex multiplication and modular functions to give a constructive solution. The book ends with a discussion of elliptic curves and Shimura reciprocity. Along the way the reader will encounter some compelling history and marvelous formulas, together with a complete solution of the class number one problem for imaginary quadratic fields.
The book is accessible to readers with modest backgrounds in number theory. In the third edition, the numerous exercises have been thoroughly checked and revised, and as a special feature, complete solutions are included. This makes the book especially attractive to readers who want to get an active knowledge of this wonderful part of mathematics.
"Sinopsis" puede pertenecer a otra edición de este libro.
David A. Cox, Amherst College, MA.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,11 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 2,00 gastos de envío desde Irlanda a España
Destinos, gastos y plazos de envíoLibrería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2022. 3rd Edition. Paperback. . . . . . Nº de ref. del artículo: V9781470470289
Cantidad disponible: 1 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. 2022. 3rd Edition. Paperback. . . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9781470470289
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. 3rd. This book studies when a prime $p$ can be written in the form $x^{2} + ny^{2}$. It begins at an elementary level with results of Fermat and Euler and then discusses the work of Lagrange, Legendre and Gauss on quadratic reciprocity and the genus theory of quadratic forms. After exploring cubic and biquadratic reciprocity, the pace quickens with the introduction of algebraic number fields and class field theory. This leads to the concept of ring class field and a complete but abstract solution of $p = x^{2} + ny^{2}$. To make things more concrete, the book introduces complex multiplication and modular functions to give a constructive solution. The book ends with a discussion of elliptic curves and Shimura reciprocity. Along the way the reader will encounter some compelling history and marvelous formulas, together with a complete solution of the class number one problem for imaginary quadratic fields.The book is accessible to readers with modest backgrounds in number theory. In the third edition, the numerous exercises have been thoroughly checked and revised, and as a special feature, complete solutions are included. This makes the book especially attractive to readers who want to get an active knowledge of this wonderful part of mathematics. Nº de ref. del artículo: LU-9781470470289
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 3rd edition. 542 pages. 9.96x7.05x1.14 inches. In Stock. Nº de ref. del artículo: __1470470284
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781470470289
Cantidad disponible: 5 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 209. Nº de ref. del artículo: B9781470470289
Cantidad disponible: 5 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 44845041-n
Cantidad disponible: 11 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. 3rd. This book studies when a prime $p$ can be written in the form $x^{2} + ny^{2}$. It begins at an elementary level with results of Fermat and Euler and then discusses the work of Lagrange, Legendre and Gauss on quadratic reciprocity and the genus theory of quadratic forms. After exploring cubic and biquadratic reciprocity, the pace quickens with the introduction of algebraic number fields and class field theory. This leads to the concept of ring class field and a complete but abstract solution of $p = x^{2} + ny^{2}$. To make things more concrete, the book introduces complex multiplication and modular functions to give a constructive solution. The book ends with a discussion of elliptic curves and Shimura reciprocity. Along the way the reader will encounter some compelling history and marvelous formulas, together with a complete solution of the class number one problem for imaginary quadratic fields.The book is accessible to readers with modest backgrounds in number theory. In the third edition, the numerous exercises have been thoroughly checked and revised, and as a special feature, complete solutions are included. This makes the book especially attractive to readers who want to get an active knowledge of this wonderful part of mathematics. Nº de ref. del artículo: LU-9781470470289
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 711092150
Cantidad disponible: 5 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 401287570
Cantidad disponible: 3 disponibles