Let V be a vertex operator algebra with a category C of (generalized) modules that has vertex tensor category structure, and thus braided tensor category structure, and let A be a vertex operator (super)algebra extension of V . We employ tensor categories to study untwisted (also called local) A-modules in C, using results of Huang-Kirillov-Lepowsky that show that A is a (super)algebra object in C and that generalized A-modules in C correspond exactly to local modules for the corresponding (super)algebra object. Both categories, of local modules for a C-algebra and (under suitable conditions) of generalized A-modules, have natural braided monoidal category structure, given in the first case by Pareigis and Kirillov-Ostrik and in the second case by Huang-Lepowsky-Zhang.
Our main result is that the Huang-Kirillov-Lepowsky isomorphism of categories between local (super)algebra modules and extended vertex operator (super)algebra modules is also an isomorphism of braided monoidal (super)categories. Using this result, we show that induction from a suitable subcategory of V -modules to Amodules is a vertex tensor functor. Two applications are given: First, we derive Verlinde formulae for regular vertex operator superalgebras and regular 1 2Z-graded vertex operator algebras by realizing them as (super)algebra objects in the vertex tensor categories of their even and Z-graded components, respectively.
"Sinopsis" puede pertenecer a otra edición de este libro.
Thomas Creutzig, University of Alberta, Edmonton, Alberta, Canada.
Shashank Kanade, University of Denver, CO.
Robert McRae, Vanderbilt University, Nashville, TN.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,00 gastos de envío desde Francia a España
Destinos, gastos y plazos de envíoEUR 4,02 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ammareal, Morangis, Francia
Softcover. Condición: Très bon. Edition 2024. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Edition 2024. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: F-671-113
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781470467241
Cantidad disponible: 5 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2024. paperback. . . . . . Nº de ref. del artículo: V9781470467241
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Let V be a vertex operator algebra with a category C of (generalized) modules that has vertex tensor category structure, and thus braided tensor category structure, and let A be a vertex operator (super)algebra extension of V . We employ tensor categories to study untwisted (also called local) A-modules in C, using results of Huang-Kirillov-Lepowsky that show that A is a (super)algebra object in C and that generalized A-modules in C correspond exactly to local modules for the corresponding (super)algebra object. Both categories, of local modules for a C-algebra and (under suitable conditions) of generalized A-modules, have natural braided monoidal category structure, given in the first case by Pareigis and Kirillov-Ostrik and in the second case by Huang-Lepowsky-Zhang.Our main result is that the Huang-Kirillov-Lepowsky isomorphism of categories between local (super)algebra modules and extended vertex operator (super)algebra modules is also an isomorphism of braided monoidal (super)categories. Using this result, we show that induction from a suitable subcategory of V -modules to Amodules is a vertex tensor functor. Two applications are given: First, we derive Verlinde formulae for regular vertex operator superalgebras and regular 1 2Z-graded vertex operator algebras by realizing them as (super)algebra objects in the vertex tensor categories of their even and Z-graded components, respectively. Nº de ref. del artículo: LU-9781470467241
Cantidad disponible: 3 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Let V be a vertex operator algebra with a category C of (generalized) modules that has vertex tensor category structure, and thus braided tensor category structure, and let A be a vertex operator (super)algebra extension of V . We employ tensor categories to study untwisted (also called local) A-modules in C, using results of Huang-Kirillov-Lepowsky that show that A is a (super)algebra object in C and that generalized A-modules in C correspond exactly to local modules for the corresponding (super)algebra object. Both categories, of local modules for a C-algebra and (under suitable conditions) of generalized A-modules, have natural braided monoidal category structure, given in the first case by Pareigis and Kirillov-Ostrik and in the second case by Huang-Lepowsky-Zhang.Our main result is that the Huang-Kirillov-Lepowsky isomorphism of categories between local (super)algebra modules and extended vertex operator (super)algebra modules is also an isomorphism of braided monoidal (super)categories. Using this result, we show that induction from a suitable subcategory of V -modules to Amodules is a vertex tensor functor. Two applications are given: First, we derive Verlinde formulae for regular vertex operator superalgebras and regular 1 2Z-graded vertex operator algebras by realizing them as (super)algebra objects in the vertex tensor categories of their even and Z-graded components, respectively. Nº de ref. del artículo: LU-9781470467241
Cantidad disponible: 3 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. 2024. paperback. . . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9781470467241
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 2148729600
Cantidad disponible: 5 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 272. Nº de ref. del artículo: B9781470467241
Cantidad disponible: 5 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 47633465-n
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Neuware. Nº de ref. del artículo: 9781470467241
Cantidad disponible: 2 disponibles