Field Theory and its Classical Problems lets Galois theory unfold in a natural way, beginning with the geometric construction problems of antiquity, continuing through the construction of regular $n$-gons and the properties of roots of unity, and then on to the solvability of polynomial equations by radicals and beyond. The logical pathway is historic, but the terminology is consistent with modern treatments. No previous knowledge of algebra is assumed. Notable topics treated along this route include the transcendence of $e$ and $\pi$, cyclotomic polynomials, polynomials over the integers, Hilbert's irreducibility theorem, and many other gems in classical mathematics. Historical and bibliographical notes complement the text, and complete solutions are provided to all problems.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781470449605
Cantidad disponible: 2 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Field Theory and its Classical Problems lets Galois theory unfold in a natural way, beginning with the geometric construction problems of antiquity, continuing through the construction of regular $n$-gons and the properties of roots of unity, and then on to the solvability of polynomial equations by radicals and beyond. The logical pathway is historic, but the terminology is consistent with modern treatments. No previous knowledge of algebra is assumed. Notable topics treated along this route include the transcendence of $e$ and $\pi$, cyclotomic polynomials, polynomials over the integers, Hilbert's irreducibility theorem, and many other gems in classical mathematics. Historical and bibliographical notes complement the text, and complete solutions are provided to all problems. Allows Galois theory unfold in a natural way, beginning with the geometric construction problems of antiquity, continuing through the construction of regular $n$-gons and the properties of roots of unity, and then on to the solvability of polynomial equations by radicals and beyond. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781470449605
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 323 pages. 8.50x5.50x1.00 inches. In Stock. Nº de ref. del artículo: 1470449609
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 415. Nº de ref. del artículo: B9781470449605
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Allows Galois theory unfold in a natural way, beginning with the geometric construction problems of antiquity, continuing through the construction of regular $n$-gons and the properties of roots of unity, and then on to the solvability of polynomial equatio. Nº de ref. del artículo: 595975334
Cantidad disponible: 2 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. Field Theory and its Classical Problems lets Galois theory unfold in a natural way, beginning with the geometric construction problems of antiquity, continuing through the construction of regular $n$-gons and the properties of roots of unity, and then on to the solvability of polynomial equations by radicals and beyond. The logical pathway is historic, but the terminology is consistent with modern treatments. No previous knowledge of algebra is assumed. Notable topics treated along this route include the transcendence of $e$ and $\pi$, cyclotomic polynomials, polynomials over the integers, Hilbert's irreducibility theorem, and many other gems in classical mathematics. Historical and bibliographical notes complement the text, and complete solutions are provided to all problems. Allows Galois theory unfold in a natural way, beginning with the geometric construction problems of antiquity, continuing through the construction of regular $n$-gons and the properties of roots of unity, and then on to the solvability of polynomial equations by radicals and beyond. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9781470449605
Cantidad disponible: 1 disponibles