This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation.
Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book.
"Sinopsis" puede pertenecer a otra edición de este libro.
Corrado De Concini, Sapienza Universita di Roma, Rome, Italy.
Claudio Procesi, Sapienza Universita di Roma, Rome, Italy.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 2,00 gastos de envío desde Irlanda a España
Destinos, gastos y plazos de envíoLibrería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2017. Paperback. . . . . . Nº de ref. del artículo: V9781470441876
Cantidad disponible: 1 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation.Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book. Nº de ref. del artículo: LU-9781470441876
Cantidad disponible: 2 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9781470441876
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 153 pages. 10.00x7.00x0.50 inches. In Stock. Nº de ref. del artículo: __147044187X
Cantidad disponible: 2 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of $m\times m$ matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation.Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case requires the development of a collection of tools. These tools and their application to the study of invariants are exlained in an elementary, self-contained way in the book. Nº de ref. del artículo: LU-9781470441876
Cantidad disponible: 2 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. 2017. Paperback. . . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9781470441876
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Softcover. 151 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04725 9781470441876 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2490965
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 295. Nº de ref. del artículo: B9781470441876
Cantidad disponible: 4 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 30616203-n
Cantidad disponible: 5 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 153. Nº de ref. del artículo: 379825093
Cantidad disponible: 3 disponibles