The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Chapter 3. Practical details of the computational implementation of the variational theory are given in Chapter 4. Chapters 5 and 6 summarize recent appli cations of the variational theory to problems of experimental interest, with many examples of the successful interpretation of complex structural fea tures observed in scattering experiments, and of the quantitative prediction of details of electron-atom scattering phenomena.
"Sinopsis" puede pertenecer a otra edición de este libro.
The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Chapter 3. Practical details of the computational implementation of the variational theory are given in Chapter 4. Chapters 5 and 6 summarize recent appli cations of the variational theory to problems of experimental interest, with many examples of the successful interpretation of complex structural fea tures observed in scattering experiments, and of the quantitative prediction of details of electron-atom scattering phenomena.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,95 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 5,20 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781468484335_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4205036
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Chapter 3. Practical details of the computational implementation of the variational theory are given in Chapter 4. Chapters 5 and 6 summarize recent appli cations of the variational theory to problems of experimental interest, with many examples of the successful interpretation of complex structural fea tures observed in scattering experiments, and of the quantitative prediction of details of electron-atom scattering phenomena. Nº de ref. del artículo: 9781468484335
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781468484335
Cantidad disponible: 10 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 357. Nº de ref. del artículo: C9781468484335
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 240. Nº de ref. del artículo: 26128018072
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 240 23:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 131520839
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Chapter 3. Practical details of the computational implementation of the variational theory are given in Chapter 4. Chapters 5 and 6 summarize recent appli cations of the variational theory to problems of experimental interest, with many examples of the successful interpretation of complex structural fea tures observed in scattering experiments, and of the quantitative prediction of details of electron-atom scattering phenomena.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch. Nº de ref. del artículo: 9781468484335
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 238 pages. 9.01x5.98x0.55 inches. In Stock. Nº de ref. del artículo: x-1468484338
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 240. Nº de ref. del artículo: 18128018066
Cantidad disponible: 4 disponibles