This monograph aims to provide a powerful general-purpose proof tech nique for the verification of systems, whether finite or infinite. It extends the idea of finite local model-checking, which was introduced by Stirling and Walker: rather than traversing the entire state space of a model, as is done for model-checking in the sense of Emerson, Clarke et ai. (checking whether a (finite) model satisfies a formula), local model-checking asks whether a particular state satisfies a formula, and only explores the nearby states far enough to answer that question. The technique used was a tableau method, constructing a tableau according to the formula and the local structure of the model. This tableau technique is here generalized to the infinite case by considering sets of states, rather than single states; because the logic used, the propositional modal mu-calculus, separates simple modal and boolean connectives from powerful fix-point operators (which make the logic more expressive than many other temporal logics), it is possible to give a rela tively straightforward set of rules for constructing a tableau. Much of the subtlety is removed from the tableau itself, and put into a relation on the state space defined by the tableau-the success of the tableau then depends on the well-foundedness of this relation. The generalized tableau technique is exhibited on Petri nets, and various standard notions from net theory are shown to playa part in the use of the technique on nets-in particular, the invariant calculus has a major role.
"Sinopsis" puede pertenecer a otra edición de este libro.
This monograph aims to provide a powerful general-purpose proof tech nique for the verification of systems, whether finite or infinite. It extends the idea of finite local model-checking, which was introduced by Stirling and Walker: rather than traversing the entire state space of a model, as is done for model-checking in the sense of Emerson, Clarke et ai. (checking whether a (finite) model satisfies a formula), local model-checking asks whether a particular state satisfies a formula, and only explores the nearby states far enough to answer that question. The technique used was a tableau method, constructing a tableau according to the formula and the local structure of the model. This tableau technique is here generalized to the infinite case by considering sets of states, rather than single states; because the logic used, the propositional modal mu-calculus, separates simple modal and boolean connectives from powerful fix-point operators (which make the logic more expressive than many other temporal logics), it is possible to give a rela tively straightforward set of rules for constructing a tableau. Much of the subtlety is removed from the tableau itself, and put into a relation on the state space defined by the tableau-the success of the tableau then depends on the well-foundedness of this relation. The generalized tableau technique is exhibited on Petri nets, and various standard notions from net theory are shown to playa part in the use of the technique on nets-in particular, the invariant calculus has a major role.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,88 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 5,19 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781468468212_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph aims to provide a powerful general-purpose proof tech nique for the verification of systems, whether finite or infinite. It extends the idea of finite local model-checking, which was introduced by Stirling and Walker: rather than traversing the entire state space of a model, as is done for model-checking in the sense of Emerson, Clarke et ai. (checking whether a (finite) model satisfies a formula), local model-checking asks whether a particular state satisfies a formula, and only explores the nearby states far enough to answer that question. The technique used was a tableau method, constructing a tableau according to the formula and the local structure of the model. This tableau technique is here generalized to the infinite case by considering sets of states, rather than single states; because the logic used, the propositional modal mu-calculus, separates simple modal and boolean connectives from powerful fix-point operators (which make the logic more expressive than many other temporal logics), it is possible to give a rela tively straightforward set of rules for constructing a tableau. Much of the subtlety is removed from the tableau itself, and put into a relation on the state space defined by the tableau-the success of the tableau then depends on the well-foundedness of this relation. The generalized tableau technique is exhibited on Petri nets, and various standard notions from net theory are shown to playa part in the use of the technique on nets-in particular, the invariant calculus has a major role. 124 pp. Englisch. Nº de ref. del artículo: 9781468468212
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4204586
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph aims to provide a powerful general-purpose proof tech nique for the verification of systems, whether finite or infinite. It extends the idea of finite local model-checking, which was introduced by Stirling and Walker: rather than traversing the entire state space of a model, as is done for model-checking in the sense of Emerson, Clarke et ai. (checking whether a (finite) model satisfies a formula), local model-checking asks whether a particular state satisfies a formula, and only explores the nearby states far enough to answer that question. The technique used was a tableau method, constructing a tableau according to the formula and the local structure of the model. This tableau technique is here generalized to the infinite case by considering sets of states, rather than single states; because the logic used, the propositional modal mu-calculus, separates simple modal and boolean connectives from powerful fix-point operators (which make the logic more expressive than many other temporal logics), it is possible to give a rela tively straightforward set of rules for constructing a tableau. Much of the subtlety is removed from the tableau itself, and put into a relation on the state space defined by the tableau-the success of the tableau then depends on the well-foundedness of this relation. The generalized tableau technique is exhibited on Petri nets, and various standard notions from net theory are shown to playa part in the use of the technique on nets-in particular, the invariant calculus has a major role. Nº de ref. del artículo: 9781468468212
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 216. Nº de ref. del artículo: C9781468468212
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9781468468212
Cantidad disponible: 10 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781468468212
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This monograph aims to provide a powerful general-purpose proof tech nique for the verification of systems, whether finite or infinite. It extends the idea of finite local model-checking, which was introduced by Stirling and Walker: rather than traversing the entire state space of a model, as is done for model-checking in the sense of Emerson, Clarke et ai. (checking whether a (finite) model satisfies a formula), local model-checking asks whether a particular state satisfies a formula, and only explores the nearby states far enough to answer that question. The technique used was a tableau method, constructing a tableau according to the formula and the local structure of the model. This tableau technique is here generalized to the infinite case by considering sets of states, rather than single states; because the logic used, the propositional modal mu-calculus, separates simple modal and boolean connectives from powerful fix-point operators (which make the logic more expressive than many other temporal logics), it is possible to give a rela tively straightforward set of rules for constructing a tableau. Much of the subtlety is removed from the tableau itself, and put into a relation on the state space defined by the tableau-the success of the tableau then depends on the well-foundedness of this relation. The generalized tableau technique is exhibited on Petri nets, and various standard notions from net theory are shown to playa part in the use of the technique on nets-in particular, the invariant calculus has a major role.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 124 pp. Englisch. Nº de ref. del artículo: 9781468468212
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030069406
Cantidad disponible: Más de 20 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA80014684682196
Cantidad disponible: 1 disponibles