Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications.
The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
"Sinopsis" puede pertenecer a otra edición de este libro.
The authors are international authorities and leaders on the presented topics. All are fellows of the Institute of Mathematical Statistics and the American Statistical Association.
Jianqing Fan is Frederick L. Moore Professor, Princeton University. He is co-editing Journal of Business and Economics Statistics and was the co-editor of The Annals of Statistics, Probability Theory and Related Fields, and Journal of Econometrics and has been recognized by the 2000 COPSS Presidents' Award, AAAS Fellow, Guggenheim Fellow, Guy medal in silver, Noether Senior Scholar Award, and Academician of Academia Sinica.
Runze Li is Elberly family chair professor and AAAS fellow, Pennsylvania State University, and was co-editor of The Annals of Statistics.
Cun-Hui Zhang is distinguished professor, Rutgers University and was co-editor of Statistical Science.
Hui Zou is professor, University of Minnesota and was action editor of Journal of Machine Learning Research.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 64,37 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 17,41 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Chiron Media, Wallingford, Reino Unido
Hardcover. Condición: New. Nº de ref. del artículo: 6666-TNFPD-9781466510845
Cantidad disponible: 5 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Hardcover. Condición: Fair. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Nº de ref. del artículo: 1466510846-7-1
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 21883052-n
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 95280184
Cantidad disponible: 3 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781466510845
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781466510845_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. The authors are international authorities and leaders on the presented topics. All are fellows of the Institute of Mathematical Statistics and the American Statistical Association. Jianqing Fan is Frederick L. Moore Professor, Princeton Uni. Nº de ref. del artículo: 595956484
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781466510845
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 600 pages. 9.50x6.25x1.50 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1466510846
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781466510845
Cantidad disponible: Más de 20 disponibles