This book is mainly devoted to finite difference numerical methods for solving partial differential equations (PDEs) models of pricing a wide variety of financial derivative securities. With this objective, the book is divided into two main parts.
In the first part, after an introduction concerning the basics on derivative securities, the authors explain how to establish the adequate PDE boundary value problems for different sets of derivative products (vanilla and exotic options, and interest rate derivatives). For many option problems, the analytic solutions are also derived with details. The second part is devoted to explaining and analyzing the application of finite differences techniques to the financial models stated in the first part of the book. For this, the authors recall some basics on finite difference methods, initial boundary value problems, and (having in view financial products with early exercise feature) linear complementarity and free boundary problems. In each chapter, the techniques related to these mathematical and numerical subjects are applied to a wide variety of financial products. This is a textbook for graduate students following a mathematical finance program as well as a valuable reference for those researchers working in numerical methods in financial derivatives. For this new edition, the book has been updated throughout with many new problems added. More details about numerical methods for some options, for example, Asian options with discrete sampling, are provided and the proof of solution-uniqueness of derivative security problems and the complete stability analysis of numerical methods for two-dimensional problems are added.
Review of first edition:
"...the book is highly well designed and structured as a textbook for graduate students following a mathematical finance program, which includes Black-Scholes dynamic hedging methodology to price financial derivatives. Also, it is a very valuable reference for those researchers working in numerical methods in financial derivatives, either with a more financial or mathematical background." -- MATHEMATICAL REVIEWS
"Sinopsis" puede pertenecer a otra edición de este libro.
You-Lan Zhu is a Professor of Mathematics at the University of North Carolina at Charlotte. Xiaonan Wu is a Professor of Mathematics at Hong Kong Baptist University. I-Liang Chern is a Professor of Mathematics at National Taiwan University. Zhi-zhong Sun is a Professor of Mathematics at Southeast University.
This book is mainly devoted to finite difference numerical methods for solving partial differential equation (PDE) models of pricing a wide variety of financial derivative securities. With this objective, the book is divided into two main parts.
In the first part, after an introduction concerning the basics on derivative securities, the authors explain how to establish the adequate PDE initial/initial-boundary value problems for different sets of derivative products (vanilla and exotic options, and interest rate derivatives). For many option problems, the analytic solutions are also derived with details. The second part is devoted to explaining and analyzing the application of finite differences techniques to the financial models stated in the first part of the book. For this, the authors recall some basics on finite difference methods, initial boundary value problems, and (having in view financial products with early exercise feature) linear complementarity and free boundary problems. In each chapter, the techniques related to these mathematical and numerical subjects are applied to a wide variety of financial products.
This is a textbook for graduate students following a mathematical finance program as well as a valuable reference for those researchers working in numerical methods of financial derivatives. For this new edition, the book has been updated throughout with many new problems added. More details about numerical methods for some options, for example, Asian options with discrete sampling, are provided and the proof of solution-uniqueness of derivative security problems and the complete stability analysis of numerical methods for two-dimensional problems are added.
Review of first edition:
"...the book is highly well designed and structured as a textbook for graduate students following a mathematical finance program, which includes Black-Scholes dynamic hedging methodology to price financial derivatives. Also, it is a very valuable reference for those researchers working in numerical methods in financial derivatives, either with a more financial or mathematical background." -- MATHEMATICAL REVIEWS, 2005
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,25 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,65 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781461473053
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030037179
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 19659453-n
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In English. Nº de ref. del artículo: ria9781461473053_new
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Hardcover. Condición: new. Hardcover. This book is mainly devoted to finite difference numerical methods for solving partial differential equations (PDEs) models of pricing a wide variety of financial derivative securities. With this objective, the book is divided into two main parts.In the first part, after an introduction concerning the basics on derivative securities, the authors explain how to establish the adequate PDE boundary value problems for different sets of derivative products (vanilla and exotic options, and interest rate derivatives). For many option problems, the analytic solutions are also derived with details. The second part is devoted to explaining and analyzing the application of finite differences techniques to the financial models stated in the first part of the book. For this, the authors recall some basics on finite difference methods, initial boundary value problems, and (having in view financial products with early exercise feature) linear complementarity and free boundary problems.In each chapter, the techniques related to these mathematical and numerical subjects are applied to a wide variety of financial products. This is a textbook for graduate students following a mathematical finance program as well as a valuable reference for those researchers working in numerical methods in financial derivatives. For this new edition, the book has been updated throughout with many new problems added. More details about numerical methods for some options, for example, Asian options with discrete sampling, are provided and the proof of solution-uniqueness of derivative security problems and the complete stability analysis of numerical methods for two-dimensional problems are added. Review of first edition:the book is highly well designed and structured as a textbook for graduate students following a mathematical finance program, which includes Black-Scholes dynamic hedging methodology to price financial derivatives. Also, it is a very valuable reference for those researchers working in numerical methods in financial derivatives, either with a more financial or mathematical background." -- MATHEMATICAL REVIEWS This book is mainly devoted to finite difference numerical methods for solving partial differential equations (PDEs) models of pricing a wide variety of financial derivative securities. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781461473053
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is mainly devoted to finite difference numerical methods for solving partial differential equations (PDEs) models of pricing a wide variety of financial derivative securities. With this objective, the book is divided into two main parts.In the first part, after an introduction concerning the basics on derivative securities, the authors explain how to establish the adequate PDE boundary value problems for different sets of derivative products (vanilla and exotic options, and interest rate derivatives). For many option problems, the analytic solutions are also derived with details.The second part is devoted to explaining and analyzing the application of finite differences techniques to the financial models stated in the first part of the book. For this, the authors recall some basics on finite difference methods, initial boundary value problems, and (having in view financial products with early exercise feature) linear complementarity and free boundary problems.In each chapter, the techniques related to these mathematical and numerical subjects are applied to a wide variety of financial products. This is a textbook for graduate students following a mathematical finance program as well as a valuable reference for those researchers working in numerical methods in financial derivatives. For this new edition, the book has been updated throughout with many new problems added. More details about numerical methods for some options, for example, Asian options with discrete sampling, are provided and the proof of solution-uniqueness of derivative security problems and the complete stability analysis of numerical methods for two-dimensional problems are added.Review of first edition:'.the book is highly well designed and structured as a textbook for graduate students following a mathematical finance program, which includes Black-Scholes dynamic hedging methodology to price financial derivatives. Also, it is a very valuable reference for those researchers working in numerical methods in financial derivatives, either with a more financial or mathematical background.' -- MATHEMATICAL REVIEWS 672 pp. Englisch. Nº de ref. del artículo: 9781461473053
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. New chapters and subsections added Exercises are included at the end of each chapter Covers a variety of topics in financeYou-Lan Zhu is a Professor of Mathematics at the University of North Carolina at Charlotte. Xiaonan . Nº de ref. del artículo: 4199336
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 19659453
Cantidad disponible: 15 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. This book explains how to establish appropriate partial differential equation boundary value problems for different sets of derivative products, and analyzes the application of finite differences techniques to a set of stated financial models. Series: Springer Finance. Num Pages: 669 pages, 92 black & white illustrations, biography. BIC Classification: KFFM; PBKJ; PBKS. Category: (P) Professional & Vocational. Dimension: 235 x 155 x 37. Weight in Grams: 1166. . 2013. 2nd ed. 2013. Hardcover. . . . . Nº de ref. del artículo: V9781461473053
Cantidad disponible: 15 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 672. Nº de ref. del artículo: 2697226411
Cantidad disponible: 4 disponibles