One of the most intriguing questions about the new computer technology that has appeared over the past few decades is whether we humans will ever be able to make computers learn. As is painfully obvious to even the most casual computer user, most current computers do not. Yet if we could devise learning techniques that enable computers to routinely improve their performance through experience, the impact would be enormous. The result would be an explosion of new computer applications that would suddenly become economically feasible (e. g. , personalized computer assistants that automatically tune themselves to the needs of individual users), and a dramatic improvement in the quality of current computer applications (e. g. , imagine an airline scheduling program that improves its scheduling method based on analyzing past delays). And while the potential economic impact ofsuccessful learning methods is sufficient reason to invest in research into machine learning, there is a second significant reason: studying machine learning helps us understand our own human learning abilities and disabilities, leading to the possibility of improved methods in education. While many open questions remain aboutthe methods by which machines and humans might learn, significant progress has been made.
"Sinopsis" puede pertenecer a otra edición de este libro.
One of the most intriguing questions about the new computer technology that has appeared over the past few decades is whether we humans will ever be able to make computers learn. As is painfully obvious to even the most casual computer user, most current computers do not. Yet if we could devise learning techniques that enable computers to routinely improve their performance through experience, the impact would be enormous. The result would be an explosion of new computer applications that would suddenly become economically feasible (e. g. , personalized computer assistants that automatically tune themselves to the needs of individual users), and a dramatic improvement in the quality of current computer applications (e. g. , imagine an airline scheduling program that improves its scheduling method based on analyzing past delays). And while the potential economic impact ofsuccessful learning methods is sufficient reason to invest in research into machine learning, there is a second significant reason: studying machine learning helps us understand our own human learning abilities and disabilities, leading to the possibility of improved methods in education. While many open questions remain aboutthe methods by which machines and humans might learn, significant progress has been made.
The two volumes of Foundations of Knowledge Acquisition document the recent progress of basic research in knowledge acquisition sponsored by the Office of Naval Research. This volume is subtitled Cognitive Models of Complex Learning, and there is a companion volume, subtitles Machine Learning. Funding was provided by a five-year Accelerated Research Initiative (ARI), and made possible significant advances in the scientific understanding of how machines and humans can acquire new knowledge so as to exhibit improved problem-solving behavior. Knowledge acquisition, as persued under the ARI, was a coordinated research thrust into both machine learning and the human learning. Chapters in Cognitive Models of Complex Learning thus include summaries of work by cognitive scientists who do computational modeling of human learning. In fact, an accomplishment of research previously sponsored by ONR's Cognitive Science Program gave insight into the knowledge and skills that distinguish human novices from human experts in various domains; the cognitive interest in the ARI was then to characterize how the transition form novice to expert actually takes place. Chapters particularly relevant to that concern are those written by Anderson, Kieras, Marshall, Ohlsson, and VanLehn. Significant progress in machine learning is reported along in a variety of fronts in the companion volume, Machine Learning, also published by Kluwer Academic Publishers. Included is work in analogical reasoning; induction and discovery; explanation-based learning; learning by competition, using genetic algorithms; learning within natural language systems; theoretical limitations, learning in Soar, a proposed general architecture for intelligent systems; and case-based reasoning. These volumes of Foundations of Knowledge Acquisition are excellent reference sources by bringing together descriptions of recent and ongoing research at the forefront of progress in one the most challenging arenas of artificial intelligence and cognitive science. In addition, contributing authors comment on ecxiting future directions for research.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. One of the most intriguing questions about the new computer technology that has appeared over the past few decades is whether we humans will ever be able to make computers learn. As is painfully obvious to even the most casual computer user, most current co. Nº de ref. del artículo: 4194576
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781461363903_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - One of the most intriguing questions about the new computer technology that has appeared over the past few decades is whether we humans will ever be able to make computers learn. As is painfully obvious to even the most casual computer user, most current computers do not. Yet if we could devise learning techniques that enable computers to routinely improve their performance through experience, the impact would be enormous. The result would be an explosion of new computer applications that would suddenly become economically feasible (e. g. , personalized computer assistants that automatically tune themselves to the needs of individual users), and a dramatic improvement in the quality of current computer applications (e. g. , imagine an airline scheduling program that improves its scheduling method based on analyzing past delays). And while the potential economic impact ofsuccessful learning methods is sufficient reason to invest in research into machine learning, there is a second significant reason: studying machine learning helps us understand our own human learning abilities and disabilities, leading to the possibility of improved methods in education. While many open questions remain aboutthe methods by which machines and humans might learn, significant progress has been made. Nº de ref. del artículo: 9781461363903
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -One of the most intriguing questions about the new computer technology that has appeared over the past few decades is whether we humans will ever be able to make computers learn. As is painfully obvious to even the most casual computer user, most current computers do not. Yet if we could devise learning techniques that enable computers to routinely improve their performance through experience, the impact would be enormous. The result would be an explosion of new computer applications that would suddenly become economically feasible (e. g. , personalized computer assistants that automatically tune themselves to the needs of individual users), and a dramatic improvement in the quality of current computer applications (e. g. , imagine an airline scheduling program that improves its scheduling method based on analyzing past delays). And while the potential economic impact ofsuccessful learning methods is sufficient reason to invest in research into machine learning, there is a second significant reason: studying machine learning helps us understand our own human learning abilities and disabilities, leading to the possibility of improved methods in education. While many open questions remain aboutthe methods by which machines and humans might learn, significant progress has been made.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 356 pp. Englisch. Nº de ref. del artículo: 9781461363903
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One of the most intriguing questions about the new computer technology that has appeared over the past few decades is whether we humans will ever be able to make computers learn. As is painfully obvious to even the most casual computer user, most current computers do not. Yet if we could devise learning techniques that enable computers to routinely improve their performance through experience, the impact would be enormous. The result would be an explosion of new computer applications that would suddenly become economically feasible (e. g. , personalized computer assistants that automatically tune themselves to the needs of individual users), and a dramatic improvement in the quality of current computer applications (e. g. , imagine an airline scheduling program that improves its scheduling method based on analyzing past delays). And while the potential economic impact ofsuccessful learning methods is sufficient reason to invest in research into machine learning, there is a second significant reason: studying machine learning helps us understand our own human learning abilities and disabilities, leading to the possibility of improved methods in education. While many open questions remain aboutthe methods by which machines and humans might learn, significant progress has been made. 356 pp. Englisch. Nº de ref. del artículo: 9781461363903
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030033001
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 356. Nº de ref. del artículo: 2697845727
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 356 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 94551552
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 350 pages. 9.25x6.10x0.81 inches. In Stock. Nº de ref. del artículo: x-146136390X
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 356. Nº de ref. del artículo: 1897845717
Cantidad disponible: 4 disponibles