Artículos relacionados a Data Mining for Association Rules and Sequential Patterns:...

Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms - Tapa blanda

 
9781461300861: Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms

Esta edición ISBN ya no está disponible.

Sinopsis

1. Introduction.- 2. Search Space Partition-Based Rule Mining.- 2.1 Problem Statement.- 2.1.1 Canonical Attribute Sequences (cas).- 2.1.2 Database.- 2.1.3 Support.- 2.1.4 Association Rule.- 2.1.5 Problem Statement.- 2.2 Search Space.- 2.3 Splitting Procedure.- 2.4 Enumerating ?-Frequent Attribute Sets (cass).- 2.5 Sequential Enumeration Procedure.- 2.6 Parallel Enumeration Procedure.- 2.6.1 Initial Load Balancing.- 2.6.2 Computing the Starting Sets.- 2.6.3 Enumeration Procedure.- 2.6.4 Dynamic Load Balancing.- 2.7 Generating the Association Rules.- 2.7.1 Sequential Generation.- 2.7.2 Parallel Generation.- 3. Apriori and Other Algorithms.- 3.1 Early Algorithms.- 3.1.1 AIS.- 3.1.2 SETM.- 3.2 The Apriori Algorithms.- 3.2.1 Apriori.- 3.2.2 AprioriTid.- 3.3 Direct Hashing and Pruning.- 3.3.1 Filtering Candidates.- 3.3.2 Database Trimming.- 3.3.3 The DHP Algorithm.- 3.4 Dynamic Set Counting.- 4. Mining for Rules over Attribute Taxonomies.- 4.1 Association Rules over Taxonomies.- 4.2 Problem Statement and Algorithms.- 4.3 Pruning Uninteresting Rules.- 4.3.1 Measure of Interest.- 4.3.2 Rule Pruning Algorithm.- 4.3.3 Attribute Presence-Based Pruning.- 5. Constraint-Based Rule Mining.- 5.1 Boolean Constraints.- 5.1.1 Syntax.- 5.1.2 Semantics.- 5.1.3 Propagation of Boolean Constraints.- 5.2 Prime Implicants.- 5.3 Problem Statement and Algorithms.- 6. Data Partition-Based Rule Mining.- 6.1 Data Partitioning.- 6.1.1 Building a Probabilistic Model.- 6.1.2 Bounding Large Deviations for One cas (Chernoff bounds).- 6.1.3 Bounding Large Deviations for Sets of cass.- 6.2 cas Enumeration with Partitioned Data.- 6.2.1 Data Partitioning.- 6.2.2 Local ?-Frequent cas Generation.- 6.2.3 Global ?-Frequent cas Generation.- 7. Mining for Rules with Categorical and Metric Attributes.- 7.1 Interval Systems and Quantitative Rules.- 7.2 k-Partial Completeness.- 7.3 Pruning Uninteresting Rules.- 7.3.1 Measure of Interest.- 7.3.2 Attribute Presence-Based Pruning.- 7.4 Enumeration Algorithms.- 8. Optimizing Rules with Quantitative Attributes.- 8.1 Solving 1-1-Type Rule Optimization Problems.- 8.1.1 Problem Statement.- 8.1.2 MC\S Problem.- 8.1.3 MS\C Problem.- 8.1.4 MG Problem.- 8.2 Solving d-1-Type Rule Optimization Problems.- 8.3 Solving 1-q-Type Rule Optimization Problems.- 8.3.1 Problem Statement.- 8.3.2 MS\C Problem.- 8.3.3 MG Problem.- 8.4 Solving d-q-Type Rule Optimization Problems.- 8.4.1 Problem Statement.- 8.4.2 Basic Enumeration.- 8.4.3 Enumeration with Pruning.- 8.4.4 Pruning the Instantiation Set.- 9. Beyond Support-Confidence Framework.- 9.1 A Criticism of the Support-Confidence Framework.- 9.2 Conviction.- 9.3 Pruning Conviction-Based Rules.- 9.3.1 Analyzing Conviction.- 9.3.2 Transitivity-Based Pruning.- 9.3.3 Improvement-Based Pruning.- 9.4 One-Step Association Rule Mining.- 9.4.1 Building a Procedure for One-Step Mining.- 9.4.2 Building a Procedure for Improvement-Based Pruning.- 9.5 Correlated Attribute-Set Mining.- 9.5.1 Collective Strength.- 9.5.2 Correlated Attribute-Set Enumeration.- 9.6 Refining Conviction: Association Rule Intensity.- 9.6.1 Measure Construction.- 9.6.2 Properties.- 9.6.3 Relating ?-int(s ? u) to conv(s ? u).- 9.6.4 Mining with the Intensity Measure.- 9.6.5 ?-Intensity Versus Intensity as Defined in [G96].- 10. Search Space Partition-Based Sequential Pattern Mining.- 10.1 Problem Statement.- 10.1.1 Sequences of cass.- 10.1.2 Database.- 10.1.3 Support.- 10.1.4 Problem Statement.- 10.2 Search Space.- 10.3 Splitting the Search Space.- 10.4 Splitting Procedure.- 10.5 Sequence Enumeration.- 10.5.1 Extending the Support Set Notion.- 10.5.2 Join Operations.- 10.5.3 Sequential Enumeration Procedure.- 10.5.4 Parallel Enumeration Procedure.- Appendix 1. Chernoff Bounds.- Appendix 2. Partitioning in Figure 10.5: Beyond 3rd Power.- Appendix 3. Partitioning in Figure 10.6: Beyond 3rd Power.- References.

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2012
  • ISBN 10 146130086X
  • ISBN 13 9781461300861
  • EncuadernaciónPaperback
  • IdiomaInglés
  • Contacto del fabricanteno disponible

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9780387950488: Data Mining for Association Rules and Sequential Patterns: Sequential and Parallel Algorithms

Edición Destacada

ISBN 10:  0387950486 ISBN 13:  9780387950488
Editorial: Springer, 2001
Tapa dura