From my B.E.E degree at the University of Minnesota and right through my S.M. degree at M.I.T., I had specialized in solid state devices and microelectronics. I made the decision to switch to computer-aided design (CAD) in 1981, only a year or so prior to the introduction of the simulated annealing algorithm by Scott Kirkpatrick, Dan Gelatt, and Mario Vecchi of the IBM Thomas 1. Watson Research Center. Because Prof. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Given my background in statistical mechanics and solid state physics, I was immediately impressed by this new combinatorial optimization technique. As Prof. Sangiovanni-Vincentelli had suggested I work in the areas of placement and routing, it was in these realms that I sought to explore this new algorithm. My flJ’St implementation of simulated annealing was for an island-style gate array placement problem. This work is presented in the Appendix of this book. I was quite struck by the effect of a nonzero temperature on what otherwise appears to be a random in terchange algorithm.
"Sinopsis" puede pertenecer a otra edición de este libro.
From my B.E.E degree at the University of Minnesota and right through my S.M. degree at M.I.T., I had specialized in solid state devices and microelectronics. I made the decision to switch to computer-aided design (CAD) in 1981, only a year or so prior to the introduction of the simulated annealing algorithm by Scott Kirkpatrick, Dan Gelatt, and Mario Vecchi of the IBM Thomas 1. Watson Research Center. Because Prof. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Given my background in statistical mechanics and solid state physics, I was immediately impressed by this new combinatorial optimization technique. As Prof. Sangiovanni-Vincentelli had suggested I work in the areas of placement and routing, it was in these realms that I sought to explore this new algorithm. My flJ'St implementation of simulated annealing was for an island-style gate array placement problem. This work is presented in the Appendix of this book. I was quite struck by the effect of a nonzero temperature on what otherwise appears to be a random in terchange algorithm.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,76 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 20180321-n
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. From my B.E.E degree at the University of Minnesota and right through my S.M. degree at M.I.T., I had specialized in solid state devices and microelectronics. I made the decision to switch to computer-aided design (CAD) in 1981, only a year or so prior to the introduction of the simulated annealing algorithm by Scott Kirkpatrick, Dan Gelatt, and Mario Vecchi of the IBM Thomas 1. Watson Research Center. Because Prof. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Given my background in statistical mechanics and solid state physics, I was immediately impressed by this new combinatorial optimization technique. As Prof. Sangiovanni-Vincentelli had suggested I work in the areas of placement and routing, it was in these realms that I sought to explore this new algorithm. My flJ'St implementation of simulated annealing was for an island-style gate array placement problem. This work is presented in the Appendix of this book. I was quite struck by the effect of a nonzero temperature on what otherwise appears to be a random in terchange algorithm. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781461289579
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781461289579_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -From my B.E.E degree at the University of Minnesota and right through my S.M. degree at M.I.T., I had specialized in solid state devices and microelectronics. I made the decision to switch to computer-aided design (CAD) in 1981, only a year or so prior to the introduction of the simulated annealing algorithm by Scott Kirkpatrick, Dan Gelatt, and Mario Vecchi of the IBM Thomas 1. Watson Research Center. Because Prof. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Given my background in statistical mechanics and solid state physics, I was immediately impressed by this new combinatorial optimization technique. As Prof. Sangiovanni-Vincentelli had suggested I work in the areas of placement and routing, it was in these realms that I sought to explore this new algorithm. My flJ'St implementation of simulated annealing was for an island-style gate array placement problem. This work is presented in the Appendix of this book. I was quite struck by the effect of a nonzero temperature on what otherwise appears to be a random in terchange algorithm. 308 pp. Englisch. Nº de ref. del artículo: 9781461289579
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. From my B.E.E degree at the University of Minnesota and right through my S.M. degree at M.I.T., I had specialized in solid state devices and microelectronics. I made the decision to switch to computer-aided design (CAD) in 1981, only a year or so prior to t. Nº de ref. del artículo: 4191507
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -From my B.E.E degree at the University of Minnesota and right through my S.M. degree at M.I.T., I had specialized in solid state devices and microelectronics. I made the decision to switch to computer-aided design (CAD) in 1981, only a year or so prior to the introduction of the simulated annealing algorithm by Scott Kirkpatrick, Dan Gelatt, and Mario Vecchi of the IBM Thomas 1. Watson Research Center. Because Prof. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Given my background in statistical mechanics and solid state physics, I was immediately impressed by this new combinatorial optimization technique. As Prof. Sangiovanni-Vincentelli had suggested I work in the areas of placement and routing, it was in these realms that I sought to explore this new algorithm. My flJ'St implementation of simulated annealing was for an island-style gate array placement problem. This work is presented in the Appendix of this book. I was quite struck by the effect of a nonzero temperature on what otherwise appears to be a random in terchange algorithm.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 308 pp. Englisch. Nº de ref. del artículo: 9781461289579
Cantidad disponible: 1 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - From my B.E.E degree at the University of Minnesota and right through my S.M. degree at M.I.T., I had specialized in solid state devices and microelectronics. I made the decision to switch to computer-aided design (CAD) in 1981, only a year or so prior to the introduction of the simulated annealing algorithm by Scott Kirkpatrick, Dan Gelatt, and Mario Vecchi of the IBM Thomas 1. Watson Research Center. Because Prof. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Given my background in statistical mechanics and solid state physics, I was immediately impressed by this new combinatorial optimization technique. As Prof. Sangiovanni-Vincentelli had suggested I work in the areas of placement and routing, it was in these realms that I sought to explore this new algorithm. My flJ'St implementation of simulated annealing was for an island-style gate array placement problem. This work is presented in the Appendix of this book. I was quite struck by the effect of a nonzero temperature on what otherwise appears to be a random in terchange algorithm. Nº de ref. del artículo: 9781461289579
Cantidad disponible: 1 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79714612895726
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 20180321
Cantidad disponible: 15 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. From my B.E.E degree at the University of Minnesota and right through my S.M. degree at M.I.T., I had specialized in solid state devices and microelectronics. I made the decision to switch to computer-aided design (CAD) in 1981, only a year or so prior to the introduction of the simulated annealing algorithm by Scott Kirkpatrick, Dan Gelatt, and Mario Vecchi of the IBM Thomas 1. Watson Research Center. Because Prof. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Given my background in statistical mechanics and solid state physics, I was immediately impressed by this new combinatorial optimization technique. As Prof. Sangiovanni-Vincentelli had suggested I work in the areas of placement and routing, it was in these realms that I sought to explore this new algorithm. My flJ'St implementation of simulated annealing was for an island-style gate array placement problem. This work is presented in the Appendix of this book. I was quite struck by the effect of a nonzero temperature on what otherwise appears to be a random in terchange algorithm. Alberto Sangiovanni-Vincentelli, my UC Berkeley advisor, had been a consultant at IBM, I re ceived a copy of the original IBM internal report on simulated annealing approximately the day of its release. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9781461289579
Cantidad disponible: 1 disponibles