In the early days of VLSI, the design of the power distribution for an integrated cir cuit was rather simple. Power distribution --the design of the geometric topology for the network of wires that connect the various power supplies, the widths of the indi vidual segments for each of these wires, the number and location of the power I/O pins around the periphery of the chip --was simple because the chips were simpler. Few available wiring layers forced floorplans that allowed simple, planar (non-over lapping) power networks. Lower speeds and circuit density made the choice of the wire widths easier: we made them just fat enough to avoid resistive voltage drops due to switching currents in the supply network. And we just didn't need enormous num bers of power and ground pins on the package for the chips to work. It's not so simple any more. Increased integration has forced us to focus on reliability concerns such as metal elec tromigration, which affects wire sizing decisions in the power network. Extra metal layers have allowed more flexibility in the topological layout of the power networks.
"Sinopsis" puede pertenecer a otra edición de este libro.
In the early days of VLSI, the design of the power distribution for an integrated cir cuit was rather simple. Power distribution --the design of the geometric topology for the network of wires that connect the various power supplies, the widths of the indi vidual segments for each of these wires, the number and location of the power I/O pins around the periphery of the chip --was simple because the chips were simpler. Few available wiring layers forced floorplans that allowed simple, planar (non-over lapping) power networks. Lower speeds and circuit density made the choice of the wire widths easier: we made them just fat enough to avoid resistive voltage drops due to switching currents in the supply network. And we just didn't need enormous num bers of power and ground pins on the package for the chips to work. It's not so simple any more. Increased integration has forced us to focus on reliability concerns such as metal elec tromigration, which affects wire sizing decisions in the power network. Extra metal layers have allowed more flexibility in the topological layout of the power networks.
The move to higher levels of integration has increased the fraction of application-specific integrated circuit (ASIC) designs containing both analog and digital circuits. While the die area for the analog portion of these chips is modest, the design time is often significant. This has motivated the development of automated analog physical design tools for cell-level place-and-route and system-level signal-integrity-routing. To date, there is no tool that has specifically addressed the critical design task of synthesizing the power distribution for the analog portion of an analog or mixed-signal ASIC. Synthesis of Power Distribution to Manage Signal Integrity in Mixed-Signal ICs describes algorithms for analog power distribution synthesis and demonstrates their effectiveness. Existing digital power bus synthesis algorithms have failed to address critical concerns for analog circuitry, thus yielding unacceptable results. These tools synthesize only the bus component of power distribution networks and only consider simplified DC aspects of macros and busses. Readers of the companion book in this series, Simulation Techniques and Solutions for Mixed-Signal Coupling in Integrated Circuits (Kluwer Academic Publishers), already recognize the inadequacy of this simplified view of the noise and power distribution problem in mixed-signal integrated circuits. Synthesis of Power Distribution to Manage Signal Integrity in Mixed-Signal ICs addresses power distribution synthesis for mixed-signal integrated circuits. Several key challenges in power distribution design are identified and automated methods to overcome them are described. This book presents a new formulation for the analog power distribution synthesis problem which synthesizes both the power busses power I/O cell assignment by evaluating DC, AC, and transient interaction between the macros, busses, chip substrate, and package. Furthermore, algorithms are introduced which simultaneously optimize power I/O cell assignment, macro cell substrate coupling, power bus topology selection and power bus sizing. Synthesis of Power Distribution to Manage Signal Integrity in Mixed-Signal ICs will be of interest to CAD designers and researchers specializing in physical design, modelling and circuit synthesis.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4191171
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781461286066_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In the early days of VLSI, the design of the power distribution for an integrated cir cuit was rather simple. Power distribution --the design of the geometric topology for the network of wires that connect the various power supplies, the widths of the indi vidual segments for each of these wires, the number and location of the power I/O pins around the periphery of the chip --was simple because the chips were simpler. Few available wiring layers forced floorplans that allowed simple, planar (non-over lapping) power networks. Lower speeds and circuit density made the choice of the wire widths easier: we made them just fat enough to avoid resistive voltage drops due to switching currents in the supply network. And we just didn't need enormous num bers of power and ground pins on the package for the chips to work. It's not so simple any more. Increased integration has forced us to focus on reliability concerns such as metal elec tromigration, which affects wire sizing decisions in the power network. Extra metal layers have allowed more flexibility in the topological layout of the power networks. Nº de ref. del artículo: 9781461286066
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In the early days of VLSI, the design of the power distribution for an integrated cir cuit was rather simple. Power distribution --the design of the geometric topology for the network of wires that connect the various power supplies, the widths of the indi vidual segments for each of these wires, the number and location of the power I/O pins around the periphery of the chip --was simple because the chips were simpler. Few available wiring layers forced floorplans that allowed simple, planar (non-over lapping) power networks. Lower speeds and circuit density made the choice of the wire widths easier: we made them just fat enough to avoid resistive voltage drops due to switching currents in the supply network. And we just didn't need enormous num bers of power and ground pins on the package for the chips to work. It's not so simple any more. Increased integration has forced us to focus on reliability concerns such as metal elec tromigration, which affects wire sizing decisions in the power network. Extra metal layers have allowed more flexibility in the topological layout of the power networks.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 236 pp. Englisch. Nº de ref. del artículo: 9781461286066
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 367. Nº de ref. del artículo: C9781461286066
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the early days of VLSI, the design of the power distribution for an integrated cir cuit was rather simple. Power distribution --the design of the geometric topology for the network of wires that connect the various power supplies, the widths of the indi vidual segments for each of these wires, the number and location of the power I/O pins around the periphery of the chip --was simple because the chips were simpler. Few available wiring layers forced floorplans that allowed simple, planar (non-over lapping) power networks. Lower speeds and circuit density made the choice of the wire widths easier: we made them just fat enough to avoid resistive voltage drops due to switching currents in the supply network. And we just didn't need enormous num bers of power and ground pins on the package for the chips to work. It's not so simple any more. Increased integration has forced us to focus on reliability concerns such as metal elec tromigration, which affects wire sizing decisions in the power network. Extra metal layers have allowed more flexibility in the topological layout of the power networks. 236 pp. Englisch. Nº de ref. del artículo: 9781461286066
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030029863
Cantidad disponible: Más de 20 disponibles