Artículos relacionados a Stochastic Controls: Hamiltonian Systems and HJB Equations:...

Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability) - Tapa blanda

 
9781461271543: Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability)

Sinopsis

This monograph unifies the two key approaches in solving optimal control problems. The book will be of interest to researchers and graduate students in applied probability, control engineering, and econometrics.

"Sinopsis" puede pertenecer a otra edición de este libro.

Críticas

From the reviews:

SIAM REVIEW

"The presentation of this book is systematic and self-contained...Summing up, this book is a very good addition to the control literature, with original features not found in other reference books. Certain parts could be used as basic material for a graduate (or postgraduate) course...This book is highly recommended to anyone who wishes to study the relationship between Pontryagin’s maximum principle and Bellman’s dynamic programming principle applied to diffusion processes."

MATHEMATICS REVIEW

This is an authoratative book which should be of interest to researchers in stochastic control, mathematical finance, probability theory, and applied mathematics. Material out of this book could also be used in graduate courses on stochastic control and dynamic optimization in mathematics, engineering, and finance curricula. Tamer Basar, Math. Review

Reseña del editor

As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol­ lowing: (Q) What is the relationship betwccn the maximum principlc and dy­ namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa­ tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or­ der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2012
  • ISBN 10 1461271541
  • ISBN 13 9781461271543
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas464
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 29,19 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 30,36 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9780387987231: Stochastic Controls: Hamiltonian Systems and HJB Equations: 43 (Stochastic Modelling and Applied Probability)

Edición Destacada

ISBN 10:  0387987231 ISBN 13:  9780387987231
Editorial: Springer, 1999
Tapa dura

Resultados de la búsqueda para Stochastic Controls: Hamiltonian Systems and HJB Equations:...

Edición internacional
Edición internacional

Jiongmin Yong, Xun Yu Zhou
Publicado por Springer, 2012
ISBN 10: 1461271541 ISBN 13: 9781461271543
Nuevo Soft cover
Edición internacional

Librería: Sizzler Texts, SAN GABRIEL, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Soft cover. Condición: New. Estado de la sobrecubierta: New. 1st Edition. **INTERNATIONAL EDITION** Read carefully before purchase: This book is the international edition in mint condition with the different ISBN and book cover design, the major content is printed in full English as same as the original North American edition. The book printed in black and white, generally send in twenty-four hours after the order confirmed. All shipments go through via USPS/UPS/DHL with tracking numbers. Great professional textbook selling experience and expedite shipping service. Nº de ref. del artículo: ABE-16772626366

Contactar al vendedor

Comprar nuevo

EUR 53,58
Convertir moneda
Gastos de envío: EUR 30,36
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Xun Yu Zhou
Publicado por Springer New York Sep 2012, 2012
ISBN 10: 1461271541 ISBN 13: 9781461271543
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. \* An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation. 464 pp. Englisch. Nº de ref. del artículo: 9781461271543

Contactar al vendedor

Comprar nuevo

EUR 139,05
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Jiongmin Yong|Xun Yu Zhou
Publicado por Springer New York, 2012
ISBN 10: 1461271541 ISBN 13: 9781461271543
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. As is well known, Pontryagin s maximum principle and Bellman s dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is tha. Nº de ref. del artículo: 4189784

Contactar al vendedor

Comprar nuevo

EUR 162,51
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Yong, Jiongmin; Zhou, Xun Yu
Publicado por Springer, 2012
ISBN 10: 1461271541 ISBN 13: 9781461271543
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In English. Nº de ref. del artículo: ria9781461271543_new

Contactar al vendedor

Comprar nuevo

EUR 192,43
Convertir moneda
Gastos de envío: EUR 4,65
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Xun Yu Zhou
ISBN 10: 1461271541 ISBN 13: 9781461271543
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. \* An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation. Nº de ref. del artículo: 9781461271543

Contactar al vendedor

Comprar nuevo

EUR 196,27
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Xun Yu Zhou
ISBN 10: 1461271541 ISBN 13: 9781461271543
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. \* An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in heuristic terms and proved under rather restrictive assumptions, which were not satisfied in most cases. In the statement of a Pontryagin-type maximum principle there is an adjoint equation, which is an ordinary differential equation (ODE) in the (finite-dimensional) deterministic case and a stochastic differential equation (SDE) in the stochastic case. The system consisting of the adjoint equa tion, the original state equation, and the maximum condition is referred to as an (extended) Hamiltonian system. On the other hand, in Bellman's dynamic programming, there is a partial differential equation (PDE), of first order in the (finite-dimensional) deterministic case and of second or der in the stochastic case. This is known as a Hamilton-Jacobi-Bellman (HJB) equation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 464 pp. Englisch. Nº de ref. del artículo: 9781461271543

Contactar al vendedor

Comprar nuevo

EUR 192,59
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Yong, Jiongmin; Zhou, Xun Yu
Publicado por Springer, 2012
ISBN 10: 1461271541 ISBN 13: 9781461271543
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030028588

Contactar al vendedor

Comprar nuevo

EUR 187,67
Convertir moneda
Gastos de envío: EUR 65,07
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Yong, Jiongmin, Zhou, Xun Yu
Publicado por Springer, 2012
ISBN 10: 1461271541 ISBN 13: 9781461271543
Antiguo o usado Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77314612715416

Contactar al vendedor

Comprar usado

EUR 268,17
Convertir moneda
Gastos de envío: EUR 29,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito