"Going over the introduction, the reader will get an almost full account, without proofs, of the results presented in the monograph... There are many questions for further research arising from this interesting book. Some of them are formulated by the authors, but many more may be born in the mind of the reader.” ---Zentralblatt
This monograph, in two parts, is an intensive and comprehensive study of the computational aspects of the moduli of smoothness and the Global Smoothness Preservation Property (GSPP).
"Sinopsis" puede pertenecer a otra edición de este libro.
"This monograph is an intensive and comprehensive study of the computational aspects of the moduli of smoothness and the Global Smoothness Preservation Property (GSPP)."
---Zentralblatt MATH
"Going over the introduction, the reader will get an almost full account, without proofs, of the results presented in the monograph... There are many questions for further research arising from this interesting book. Some of them are formulated by the authors, but many more may be born in the mind of the reader."
―Zentralblatt Math.
We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 19494031-n
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP. We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact valA ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation PropA erty (GSPP) for almost all known linear approximation operators of apA proximation theory including: trigonometric operators and algebraic inA terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral operaA tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathematA ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP methA ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studie Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781461271123
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030028553
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 19494031
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781461271123_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP. 544 pp. Englisch. Nº de ref. del artículo: 9781461271123
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness . Nº de ref. del artículo: 4189742
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 544. Nº de ref. del artículo: 2658593696
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 855. Nº de ref. del artículo: C9781461271123
Cantidad disponible: Más de 20 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Num Pages: 538 pages, biography. BIC Classification: PBC; PBF; PBK; PBW. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 27. Weight in Grams: 825. . 2012. Softcover reprint of the original 1st ed. 2000. Paperback. . . . . Nº de ref. del artículo: V9781461271123
Cantidad disponible: 15 disponibles