Book by Adkins William A Weintraub Steven H
"Sinopsis" puede pertenecer a otra edición de este libro.
This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous undergraduate might learn some algebra from this book). Perhaps the principal distinguishing feature of this book is its point of view. Many textbooks tend to be encyclopedic. We have tried to write one that is thematic, with a consistent point of view. The theme, as indicated by our title, is that of modules (though our intention has not been to write a textbook purely on module theory). We begin with some group and ring theory, to set the stage, and then, in the heart of the book, develop module theory. Having developed it, we present some of its applications: canonical forms for linear transformations, bilinear forms, and group representations. Why modules? The answer is that they are a basic unifying concept in mathematics. The reader is probably already familiar with the basic role that vector spaces play in mathematics, and modules are a generaliza tion of vector spaces. (To be precise, modules are to rings as vector spaces are to fields.
This book is designed as a text for a first-year graduate algebra course. The choice of topics is guided by the underlying theme of modules as a basic unifying concept in mathematics. Beginning with standard topics in groups and ring theory, the authors then develop basic module theory, culminating in the fundamental structure theorem for finitely generated modules over a principal ideal domain. They then treat canonical form theory in linear algebra as an application of this fundamental theorem. Module theory is also used in investigating bilinear, sesquilinear, and quadratic forms. The authors develop some multilinear algebra (Hom and tensor product) and the theory of semisimple rings and modules and apply these results in the final chapter to study group represetations by viewing a representation of a group G over a field F as an F(G)-module. The book emphasizes proofs with a maximum of insight and a minimum of computation in order to promote understanding. However, extensive material on computation (for example, computation of canonical forms) is provided.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,52 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,52 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Books From California, Simi Valley, CA, Estados Unidos de America
paperback. Condición: Very Good. Nº de ref. del artículo: mon0003745273
Cantidad disponible: 1 disponibles
Librería: Textbooks_Source, Columbia, MO, Estados Unidos de America
paperback. Condición: New. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Softcover reprint of the original 1st ed. 1992. Nº de ref. del artículo: 002329119N
Cantidad disponible: 5 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2716030028411
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 19199749-n
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781461269489
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781461269489
Cantidad disponible: 10 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In English. Nº de ref. del artículo: ria9781461269489_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 19199749-n
Cantidad disponible: 2 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is designed as a text for a first-year graduate algebra course. As necessary background we would consider a good undergraduate linear algebra course. An undergraduate abstract algebra course, while helpful, is not necessary (and so an adventurous undergraduate might learn some algebra from this book). Perhaps the principal distinguishing feature of this book is its point of view. Many textbooks tend to be encyclopedic. We have tried to write one that is thematic, with a consistent point of view. The theme, as indicated by our title, is that of modules (though our intention has not been to write a textbook purely on module theory). We begin with some group and ring theory, to set the stage, and then, in the heart of the book, develop module theory. Having developed it, we present some of its applications: canonical forms for linear transformations, bilinear forms, and group representations. Why modules The answer is that they are a basic unifying concept in mathematics. The reader is probably already familiar with the basic role that vector spaces play in mathematics, and modules are a generaliza tion of vector spaces. (To be precise, modules are to rings as vector spaces are to fields. 544 pp. Englisch. Nº de ref. del artículo: 9781461269489
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 855. Nº de ref. del artículo: C9781461269489
Cantidad disponible: Más de 20 disponibles