Artículos relacionados a Variational Methods for Structural Optimization

Variational Methods for Structural Optimization - Tapa blanda

 
9781461211891: Variational Methods for Structural Optimization

Esta edición ISBN ya no está disponible.

Sinopsis

I Preliminaries.- 1 Relaxation of One-Dimensional Variational Problems.- 1.1 An Optimal Design by Means of Composites.- 1.2 Stability of Minimizers and the Weierstrass Test.- 1.2.1 Necessary and Sufficient Conditions.- 1.2.2 Variational Methods: Weierstrass Test.- 1.3 Relaxation.- 1.3.1 Nonconvex Variational Problems.- 1.3.2 Convex Envelope.- 1.3.3 Minimal Extension and Minimizing Sequences.- 1.3.4 Examples: Solutions to Nonconvex Problems.- 1.3.5 Null-Lagrangians and Convexity.- 1.3.6 Duality.- 1.4 Conclusion and Problems.- 2 Conducting Composites.- 2.1 Conductivity of Inhomogeneous Media.- 2.1.1 Equations for Conductivity.- 2.1.2 Continuity Conditions in Inhomogeneous Materials.- 2.1.3 Energy, Variational Principles.- 2.2 Composites.- 2.2.1 Homogenization and Effective Tensor.- 2.2.2 Effective Properties of Laminates.- 2.2.3 Effective Medium Theory: Coated Circles.- 2.3 Conclusion and Problems.- 3 Bounds and G-Closures.- 3.1 Effective Tensors: Variational Approach.- 3.1.1 Calculation of Effective Tensors.- 3.1.2 Wiener Bounds.- 3.2 G-Closure Problem.- 3.2.1 G-convergence.- 3.2.2 G-Closure: Definition and Properties.- 3.2.3 Example: The G-Closure of Isotropic Materials.- 3.2.4 Weak G-Closure (Range of Attainability).- 3.3 Conclusion and Problems.- II Optimization of Conducting Composites.- 4 Domains of Extremal Conductivity.- 4.1 Statement of the Problem.- 4.2 Relaxation Based on the G-Closure.- 4.2.1 Relaxation.- 4.2.2 Sufficient Conditions.- 4.2.3 A Dual Problem.- 4.2.4 Convex Envelope and Compatibility Conditions..- 4.3 Weierstrass Test.- 4.3.1 Variation in a Strip.- 4.3.2 The Minimal Extension.- 4.3.3 Summary.- 4.4 Dual Problem with Nonsmooth Lagrangian.- 4.5 Example: The Annulus of Extremal Conductivity.- 4.6 Optimal Multiphase Composites.- 4.6.1 An Elastic Bar of Extremal Torsion Stiffness.- 4.6.2 Multimaterial Design.- 4.7 Problems.- 5 Optimal Conducting Structures.- 5.1 Relaxation and G-Convergence.- 5.1.1 Weak Continuity and Weak Lower Semicontinuity.- 5.1.2 Relaxation of Constrained Problems by G-Closure..- 5.2 Solution to an Optimal Design Problem.- 5.2.1 Augmented Functional.- 5.2.2 The Local Problem.- 5.2.3 Solution in the Large Scale.- 5.3 Reducing to a Minimum Variational Problem.- 5.4 Examples.- 5.5 Conclusion and Problems.- III Quasiconvexity and Relaxation.- 6 Quasiconvexity.- 6.1 Structural Optimization Problems.- 6.1.1 Statements of Problems of Optimal Design.- 6.1.2 Fields and Differential Constraints.- 6.2 Convexity of Lagrangians and Stability of Solutions.- 6.2.1 Necessary Conditions: Weierstrass Test.- 6.2.2 Attainability of the Convex Envelope.- 6.3 Quasiconvexity.- 6.3.1 Definition of Quasiconvexity.- 6.3.2 Quasiconvex Envelope.- 6.3.3 Bounds.- 6.4 Piecewise Quadratic Lagrangians.- 6.5 Problems.- 7 Optimal Structures and Laminates.- 7.1 Laminate Bounds.- 7.1.1 The Laminate Bound.- 7.1.2 Bounds of High Rank.- 7.2 Effective Properties of Simple Laminates.- 7.2.1 Laminates from Two Materials.- 7.2.2 Laminate from a Family of Materials.- 7.3 Laminates of Higher Rank.- 7.3.1 Differential Scheme.- 7.3.2 Matrix Laminates.- 7.3.3 Y-Transform.- 7.3.4 Calculation of the Fields Inside the Laminates.- 7.4 Properties of Complicated Structures.- 7.4.1 Multicoated and Self-Repeating Structures.- 7.4.2 Structures of Contrast Properties.- 7.5 Optimization in the Class of Matrix Composites.- 7.6 Discussion and Problems.- 8 Lower Bound: Translation Method.- 8.1 Translation Bound.- 8.2 Quadratic Translators.- 8.2.1 Compensated Compactness.- 8.2.2 Determination of Quadratic Translators.- 8.3 Translation Bounds for Two-Well Lagrangians.- 8.3.1 Basic Formulas.- 8.3.2 Extremal Translations.- 8.3.3 Example: Lower Bound for the Sum of Energies.- 8.3.4 Translation Bounds and Laminate Structures..- 8.4 Problems.- 9 Necessary Conditions and Minimal Extensions.- 9.1 Variational Methods for Nonquasiconvex Lagrangians.- 9.2 Variations.- 9.2.1 Variation of Properties.- 9.2.2 Increment.- 9.2.3 Minimal Extension.- 9.3 Necessary Condi

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2011
  • ISBN 10 1461211891
  • ISBN 13 9781461211891
  • EncuadernaciónPaperback
  • IdiomaInglés
  • Contacto del fabricanteno disponible

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título