Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes.
Through real-world examples and practical exercises, you'll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you're familiar with the basics of Python data analysis, this is an ideal introduction to HDF5.
"Sinopsis" puede pertenecer a otra edición de este libro.
Andrew Collette holds a Ph.D. in physics from UCLA, and works as a laboratory research scientist at the University of Colorado. He has worked with the Python-NumPy-HDF5 stack at two multimillion-dollar research facilities; the first being the Large Plasma Device at UCLA (entirely standardized on HDF5), and the second being the hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies, University of Colorado at Boulder. Additionally, Dr. Collette is a leading developer of the HDF5 for Python (h5py) project.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Paperback. Condición: Good. 1. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. Nº de ref. del artículo: 1449367836-11-1
Cantidad disponible: 1 disponibles
Librería: Dream Books Co., Denver, CO, Estados Unidos de America
Condición: good. Gently used with minimal wear on the corners and cover. A few pages may contain light highlighting or writing, but the text remains fully legible. Dust jacket may be missing, and supplemental materials like CDs or codes may not be included. May be ex-library with library markings. Ships promptly! Nº de ref. del artículo: DBV.1449367836.G
Cantidad disponible: 1 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_415525168
Cantidad disponible: 1 disponibles
Librería: ThriftBooks-Atlanta, AUSTELL, GA, Estados Unidos de America
Paperback. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less. Nº de ref. del artículo: G1449367836I3N00
Cantidad disponible: 1 disponibles
Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR007476911
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 20137473-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Python and HDF5. Book. Nº de ref. del artículo: BBS-9781449367831
Cantidad disponible: 5 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Nº de ref. del artículo: 10a55c9a0ae553744cd2446a3f41dea0
Cantidad disponible: 3 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530330459
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Gain hands-on experience with HDF5 for storing scientific data in Python. This practical guide quickly gets you up to speed on the details, best practices, and pitfalls of using HDF5 to archive and share numerical datasets ranging in size from gigabytes to terabytes. Through real-world examples and practical exercises, you'll explore topics such as scientific datasets, hierarchically organized groups, user-defined metadata, and interoperable files. Examples are applicable for users of both Python 2 and Python 3. If you're familiar with the basics of Python data analysis, this is an ideal introduction to HDF5. Get set up with HDF5 tools and create your first HDF5 file Work with datasets by learning the HDF5 Dataset object Understand advanced features like dataset chunking and compression Learn how to work with HDF5's hierarchical structure, using groups Create self-describing files by adding metadata with HDF5 attributes Take advantage of HDF5's type system to create interoperable files Express relationships among data with references, named types, and dimension scales Discover how Python mechanisms for writing parallel code interact with HDF5. Nº de ref. del artículo: LU-9781449367831
Cantidad disponible: Más de 20 disponibles