Although you don't need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS).
Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you'll learn how to assemble the building blocks necessary to solve your biggest data analysis problems.
"Sinopsis" puede pertenecer a otra edición de este libro.
Kevin J. Schmidt is a senior manager at Dell SecureWorks, Inc., an industry leading MSSP, which is part of Dell. He is responsible for the design and development of a major part of the company's SIEM platform. This includes data acquisition, correlation, and analysis of log data. Prior to SecureWorks, Kevin worked for Reflex Security, where he worked on an IPS engine and anti-virus software. And prior to this, he was a lead developer and architect at GuardedNet, Inc., which built one of the industry's first SIEM platforms. Kevin is co-author of Essential SNMP, second edition (O'Reilly and Associates, ISBN: 978-0-596-00840-6) and also Logging and Log Management: The Authoritative Guide to Understanding the Concepts Surrounding Logging and Log Management (Syngress, ISBN: 978-1-597-49635-3). Christopher Phillips is a manager and senior software developer at Dell SecureWorks, Inc, an industry leading MSSP, which is part of Dell. He is responsible for the design and development of the company's Threat Intelligence service platform. He also has responsibility for a team involved in integrating log and event information from many third-party providers that allow customers to have all of their core security information delivered to and analyzed by the Dell SecureWorks systems and security professionals. Prior to Dell SecureWorks, Chris worked for McKesson and Allscripts, where he worked with clients on HIPAA compliance, security, and healthcare systems integration. He has over 18 years of experience in software development and design. He holds a Bachelor of Science in Computer Science and an MBA. Chris has spent time designing and developing virtualization and cloud Infrastructure as a Service strategies at Dell to help our security services scale globally Additionally, he has been working with Hadoop, Pig scripting languages, and Amazon Elastic Map Reduce to develop strategies to gain insights and analyze Big Data issues in the cloud. Chris is co-author of Logging and Log Management: The Authoritative Guide to Understanding the Concepts Surrounding Logging and Log Management (Syngress, ISBN: 978-1-597-49635-3).
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 16,97 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 0,70 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781449363628
Cantidad disponible: 2 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781449363628
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 334. Nº de ref. del artículo: B9781449363628
Cantidad disponible: 2 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Although you don't need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS). Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you'll learn how to assemble the building blocks necessary to solve your biggest data analysis problems. Get an overview of the AWS and Apache software tools used in large-scale data analysis Go through the process of executing a Job Flow with a simple log analyzer Discover useful MapReduce patterns for filtering and analyzing data sets Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow Learn the basics for using Amazon EMR to run machine learning algorithms Develop a project cost model for using Amazon EMR and other AWS tools. Nº de ref. del artículo: LU-9781449363628
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 19351790-n
Cantidad disponible: 2 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. Although you don't need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS). Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you'll learn how to assemble the building blocks necessary to solve your biggest data analysis problems. Get an overview of the AWS and Apache software tools used in large-scale data analysis Go through the process of executing a Job Flow with a simple log analyzer Discover useful MapReduce patterns for filtering and analyzing data sets Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow Learn the basics for using Amazon EMR to run machine learning algorithms Develop a project cost model for using Amazon EMR and other AWS tools. Nº de ref. del artículo: LU-9781449363628
Cantidad disponible: 1 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Although you don't need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS). Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you'll learn how to assemble the building blocks necessary to solve your biggest data analysis problems. Get an overview of the AWS and Apache software tools used in large-scale data analysis Go through the process of executing a Job Flow with a simple log analyzer Discover useful MapReduce patterns for filtering and analyzing data sets Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow Learn the basics for using Amazon EMR to run machine learning algorithms Develop a project cost model for using Amazon EMR and other AWS tools. Nº de ref. del artículo: LU-9781449363628
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 19351790
Cantidad disponible: 2 disponibles
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. Although you don't need a large computing infrastructure to process massive amounts of data with Apache Hadoop, it can still be difficult to get started. This practical guide shows you how to quickly launch data analysis projects in the cloud by using Amazon Elastic MapReduce (EMR), the hosted Hadoop framework in Amazon Web Services (AWS). Authors Kevin Schmidt and Christopher Phillips demonstrate best practices for using EMR and various AWS and Apache technologies by walking you through the construction of a sample MapReduce log analysis application. Using code samples and example configurations, you'll learn how to assemble the building blocks necessary to solve your biggest data analysis problems. Get an overview of the AWS and Apache software tools used in large-scale data analysis Go through the process of executing a Job Flow with a simple log analyzer Discover useful MapReduce patterns for filtering and analyzing data sets Use Apache Hive and Pig instead of Java to build a MapReduce Job Flow Learn the basics for using Amazon EMR to run machine learning algorithms Develop a project cost model for using Amazon EMR and other AWS tools. Nº de ref. del artículo: LU-9781449363628
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781449363628_new
Cantidad disponible: 2 disponibles