When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success.
This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You'll quickly learn the benefits of several simple algorithms--including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms--by working through code examples written in Python, which you can easily adapt for deployment on your own website.
"Sinopsis" puede pertenecer a otra edición de este libro.
John Myles White is a PhD candidate in Psychology at Princeton. He studies pattern recognition, decision-making, and economic behavior using behavioral methods and fMRI. He is particularly interested in anomalies of value assessment.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: HPB-Emerald, Dallas, TX, Estados Unidos de America
paperback. Condición: Very Good. Connecting readers with great books since 1972! Used books may not include companion materials, and may have some shelf wear or limited writing. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_451851886
Cantidad disponible: 1 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Nº de ref. del artículo: 40666621-6
Cantidad disponible: 1 disponibles
Librería: WeBuyBooks, Rossendale, LANCS, Reino Unido
Condición: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Nº de ref. del artículo: wbs6721212737
Cantidad disponible: 1 disponibles
Librería: Treasure Island, Waltham, MA, Estados Unidos de America
paperback. Condición: Very Good. standard used condition Softcover minor shelf-wear, one page has some writing, clean copy. Nº de ref. del artículo: 53HZZZ00015Q
Cantidad disponible: 1 disponibles
Librería: Treasure Island, Waltham, MA, Estados Unidos de America
paperback. Condición: Fine. like new only minor wear clean pages, securely packed, we ship daily. Nº de ref. del artículo: 53HZZZ00015K
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781449341336
Cantidad disponible: 3 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WO-9781449341336
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 18717122-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Bandit Algorithms for Website Optimization: Developing, Deploying, and Debugging. Book. Nº de ref. del artículo: BBS-9781449341336
Cantidad disponible: 5 disponibles
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
Paperback. Condición: New. This book shows you how to run experiments on your website using A/B testing - and then takes you a huge step further by introducing you to bandit algorithms for website optimization. Author John Myles White shows you how this family of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which have previously only been described in research papers. You'll learn about several simple algorithms you can deploy on your own websites to improve your business including the epsilon-greedy algorithm, the UCB algorithm and a contextual bandit algorithm. All of these algorithms are implemented in easy-to-follow Python code and be quickly adapted to your business's specific needs. You'll also learn about a framework for testing and debugging bandit algorithms using Monte Carlo simulations, a technique originally developed by nuclear physicists during World War II. Monte Carlo techniques allow you to decide whether A/B testing will work for your business needs or whether you need to deploy a more sophisticated bandits algorithm. Nº de ref. del artículo: LU-9781449341336
Cantidad disponible: Más de 20 disponibles