This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features: describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. T. Ravindra Babu is a Principal Researcher in the E-Commerce Research Labs at Infosys Ltd., Bangalore, India. Mr. S.V. Subrahmanya is Vice President and Research Fellow at the same organization. Dr. M. Narasimha Murty is a Professor in the Department of Computer Science and Automation at the Indian Institute of Science, Bangalore, India.
As data mining algorithms are typically applied to sizable volumes of high-dimensional data, these can result in large storage requirements and inefficient computation times.
This unique text/reference addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy, as illustrated using high-dimensional handwritten digit data and a large intrusion detection dataset.
Topics and features:
A must-read for all researchers involved in data mining and big data, the book proposes each algorithm within a discussion of the wider context, implementation details and experimental results. These are further supported by bibliographic notes and a glossary.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530317241
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781447156062_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features: describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems. 216 pp. Englisch. Nº de ref. del artículo: 9781447156062
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 216. Nº de ref. del artículo: 2697536950
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 216 62 Illus. (3 Col.). Nº de ref. del artículo: 94893161
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 216. Nº de ref. del artículo: 1897536956
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Nº de ref. del artículo: C9781447156062
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 197 pages. 9.25x6.25x0.75 inches. In Stock. Nº de ref. del artículo: x-1447156064
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4185310
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -This book addresses the challenges of data abstraction generation using a least number of database scans, compressing data through novel lossy and non-lossy schemes, and carrying out clustering and classification directly in the compressed domain. Schemes are presented which are shown to be efficient both in terms of space and time, while simultaneously providing the same or better classification accuracy. Features:describes a non-lossy compression scheme based on run-length encoding of patterns with binary valued features; proposes a lossy compression scheme that recognizes a pattern as a sequence of features and identifying subsequences; examines whether the identification of prototypes and features can be achieved simultaneously through lossy compression and efficient clustering; discusses ways to make use of domain knowledge in generating abstraction; reviews optimal prototype selection using genetic algorithms; suggests possible ways of dealing with big data problems using multiagent systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Nº de ref. del artículo: 9781447156062
Cantidad disponible: 2 disponibles