Support Vector Machines are popular because of their high classification importance; this is the first book to focus the discussions on SVMs specifically to pattern classification.
"Sinopsis" puede pertenecer a otra edición de este libro.
Originally formulated for two-class classification problems, support vector machines (SVMs) are now accepted as powerful tools for developing pattern classification and function approximation systems. Recent developments in kernel-based methods include kernel classifiers and regressors and their variants, advancements in generalization theory, and various feature selection and extraction methods.
Providing a unique perspective on the state of the art in SVMs, with a particular focus on classification, this thoroughly updated new edition includes a more rigorous performance comparison of classifiers and regressors. In addition to presenting various useful architectures for multiclass classification and function approximation problems, the book now also investigates evaluation criteria for classifiers and regressors.
Topics and Features:
An essential guide on the use of SVMs in pattern classification, this comprehensive resource will be of interest to researchers and postgraduate students, as well as professional developers.
Dr. Shigeo Abe is a Professor at Kobe University, Graduate School of Engineering. He is the author of the Springer titles Neural Networks and Fuzzy Systems and Pattern Classification: Neuro-fuzzy Methods and Their Comparison.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530316562
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors. 492 pp. Englisch. Nº de ref. del artículo: 9781447125488
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A comprehensive resource for the use of Support Vector Machines in Pattern ClassificationTakes the unique approach of focussing on classification rather than covering the theoretical aspects of Support Vector MachinesIncludes application of. Nº de ref. del artículo: 4184491
Cantidad disponible: Más de 20 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. This guide on the use of SVMs in pattern classification includes a rigorous performance comparison of classifiers and regressors. The book takes the unique approach of focusing on classification rather than covering the theoretical aspects of SVMs. Series: Advances in Computer Vision and Pattern Recognition. Num Pages: 493 pages, 114 black & white illustrations, 89 black & white tables, biography. BIC Classification: TJFM; UGD; UYQP; UYQV. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 25. Weight in Grams: 684. . 2012. Softcover reprint of hardcover 2nd ed. 2010. Paperback. . . . . Nº de ref. del artículo: V9781447125488
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781447125488_new
Cantidad disponible: Más de 20 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Support Vector Machines for Pattern Classification | Shigeo Abe | Taschenbuch | xx | Englisch | 2012 | Springer | EAN 9781447125488 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Nº de ref. del artículo: 106479748
Cantidad disponible: 5 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 492 2nd Edition. Nº de ref. del artículo: 2614421305
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 492 pp. Englisch. Nº de ref. del artículo: 9781447125488
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 492 144 Illus. Nº de ref. del artículo: 11252454
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 492. Nº de ref. del artículo: 1814421299
Cantidad disponible: 4 disponibles