Artículos relacionados a Genetic Algorithms: Concepts and Designs

Genetic Algorithms: Concepts and Designs - Tapa blanda

 
9781447105787: Genetic Algorithms: Concepts and Designs

Esta edición ISBN ya no está disponible.

Sinopsis

1. Introduction, Background and Biological Inspiration.- 1.1 Biological Background.- 1.1.1 Coding of DNA.- 1.1.2 Flow of Genetic Information.- 1.1.3 Recombination.- 1.1.4 Mutation.- 1.2 Conventional Genetic Algorithm.- 1.3 Theory and Hypothesis.- 1.3.1 Schema Theory.- 1.3.2 Building Block Hypothesis.- 1.4 A Simple Example.- 2. Modifications to Genetic Algorithms.- 2.1 Chromosome Representation.- 2.2 Objective and Fitness Functions.- 2.2.1 Linear Scaling.- 2.2.2 Sigma Truncation.- 2.2.3 Power Law Scaling.- 2.2.4 Ranking.- 2.3 Selection Methods.- 2.4 Genetic Operations.- 2.4.1 Crossover.- 2.4.2 Mutation.- 2.4.3 Operational Rates Settings.- 2.4.4 Reordering.- 2.5 Replacement Scheme.- 2.6 A Game of Genetic Creatures.- 2.7 Chromosome Representation.- 2.8 Fitness Function.- 2.9 Genetic Operation.- 2.9.1 Selection Window for Functions and Parameters.- 2.10 Demo and Run.- 3. Intrinsic Characteristics.- 3.1 Parallel Genetic Algorithm.- 3.1.1 Global GA.- 3.1.2 Migration GA.- 3.1.3 Diffusion GA.- 3.2 Multiple Objective.- 3.3 Robustness.- 3.4 Multimodal.- 3.5 Constraints.- 3.5.1 Searching Domain.- 3.5.2 Repair Mechanism.- 3.5.3 Penalty Scheme.- 3.5.4 Specialized Genetic Operations.- 4. Hierarchical Genetic Algorithm.- 4.1 Biological Inspiration.- 4.1.1 Regulatory Sequences and Structural Genes.- 4.1.2 Active and Inactive Genes.- 4.2 Hierarchical Chromosome Formulation.- 4.3 Genetic Operations.- 4.4 Multiple Objective Approach.- 4.4.1 Iterative Approach.- 4.4.2 Group Technique.- 4.4.3 Multiple-Objective Ranking.- 5. Genetic Algorithms in Filtering.- 5.1 Digital IIR Filter Design.- 5.1.1 Chromosome Coding.- 5.1.2 The Lowest Filter Order Criterion.- 5.2 Time Delay Estimation.- 5.2.1 Problem Formulation.- 5.2.2 Genetic Approach.- 5.2.3 Results.- 5.3 Active Noise Control.- 5.3.1 Problem Formulation.- 5.3.2 Simple Genetic Algorithm.- 5.3.3 Multiobjective Genetic Algorithm Approach.- 5.3.4 Parallel Genetic Algorithm Approach.- 5.3.5 Hardware GA Processor.- 6. Genetic Algorithms in H-infinity Control.- 6.1 A Mixed Optimization Design Approach.- 6.1.1 Hierarchical Genetic Algorithm.- 6.1.2 Application I: The Distillation Column Design.- 6.1.3 Application II: Benchmark Problem.- 6.1.4 Design Comments.- 7. Hierarchical Genetic Algorithms in Computational Intelligence.- 7.1 Neural Networks.- 7.1.1 Introduction of Neural Network.- 7.1.2 HGA Trained Neural Network (HGANN).- 7.1.3 Simulation Results.- 7.1.4 Application of HGANN on Classification.- 7.2 Fuzzy Logic.- 7.2.1 Basic Formulation of Fuzzy Logic Controller.- 7.2.2 Hierarchical Structure.- 7.2.3 Application I: Water Pump System.- 7.2.4 Application II: Solar Plant.- 8. Genetic Algorithms in Speech Recognition Systems.- 8.1 Background of Speech Recognition Systems.- 8.2 Block Diagram of a Speech Recognition System.- 8.3 Dynamic Time Warping.- 8.4 Genetic Time Warping Algorithm (GTW).- 8.4.1 Encoding mechanism.- 8.4.2 Fitness function.- 8.4.3 Selection.- 8.4.4 Crossover.- 8.4.5 Mutation.- 8.4.6 Genetic Time Warping with Relaxed Slope Weighting Function (GTW-RSW).- 8.4.7 Hybrid Genetic Algorithm.- 8.4.8 Performance Evaluation.- 8.5 Hidden Markov Model using Genetic Algorithms.- 8.5.1 Hidden Markov Model.- 8.5.2 Training Discrete HMMs using Genetic Algorithms.- 8.5.3 Genetic Algorithm for Continuous HMM Training.- 8.6 A Multiprocessor System for Parallel Genetic Algorithms.- 8.6.1 Implementation.- 8.7 Global GA for Parallel GA-DTW and PGA-HMM.- 8.7.1 Experimental Results of Nonlinear Time-Normalization by the Parallel GA-DTW.- 8.8 Summary.- 9. Genetic Algorithms in Production Planning and Scheduling Problems.- 9.1 Background of Manufacturing Systems.- 9.2 ETPSP Scheme.- 9.2.1 ETPSP Model.- 9.2.2 Bottleneck Analysis.- 9.2.3 Selection of Key-Processes.- 9.3 Chromosome Configuration.- 9.3.1 Operational Parameters for GA Cycles.- 9.4 GA Application for ETPSP.- 9.4.1 Case 1: Two-product ETPSP.- 9.4.2 Case 2: Multi-product ETPSP.- 9.4.3 Case 3: MOGA Approach.- 9.5 Concluding Remarks.- 10. Genetic Algorithms

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialSpringer
  • Año de publicación2011
  • ISBN 10 1447105788
  • ISBN 13 9781447105787
  • EncuadernaciónPaperback
  • IdiomaInglés
  • Contacto del fabricanteno disponible

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9781852330729: Genetic Algorithms: Concepts and Designs (Advanced Textbooks in Control and Signal Processing)

Edición Destacada

ISBN 10:  1852330724 ISBN 13:  9781852330729
Editorial: Springer, 1999
Tapa blanda