The idea of expanding an arbitrary function in terms of the solutions of a second-order differential equation goes back to the time of Sturm and Liouville, more than a hundred years ago. The first satisfactory proofs were constructed by various authors early in the twentieth century. Later, a general theory of the singular cases was given by Weyl, who-based i on the theory of integral equations. An alternative method, proceeding via the general theory of linear operators in Hilbert space, is to be found in the treatise by Stone on this subject. Here I have adopted still another method. Proofs of these expansions by means of contour integration and the calculus of residues were given by Cauchy, and this method has been used by several authors in the ordinary Sturm-Liouville case. It is applied here to the general singular case. It is thus possible to avoid both the theory of integral equations and the general theory of linear operators, though of course we are sometimes doing no more than adapt the latter theory to the particular case considered. The ordinary Sturm-Liouville expansion is now well known. I therefore dismiss it as rapidly as possible, and concentrate on the singular cases, a class which seems to include all the most interesting examples. In order to present a clear-cut theory in a reasonable space, I have had to reject firmly all generalizations. Many of the arguments used extend quite easily to other cases, such as that of two simultaneous first-order equations. It seems that physicists are interested in some aspects of these questions. If any physicist finds here anything that he wishes to know, I shall indeed be delighted but it is to mathematicians that the book is addressed. I believe in the future of mathematics for physicists, but it seems desirable that a writer on this subject should understand physics as well as mathematics.
"Sinopsis" puede pertenecer a otra edición de este libro.
EIGENFUNCTION EXPANSIONS ASSOCIATED WITH SECOND-ORDER DIFFERENTIAL EQUATIONS by E. C. TITCHMARSH. PREFACE: THE idea of expanding an arbitrary function in terms of the solutions of a second-order differential equation goes back to the time of Sturm and Liouville, more than a hundred years ago. The first satisfactory proofs were constructed by various authors early in the twentieth century. Later, a general theory of the singular cases was given by Weyl, who-based i on the theory of integral equations. An alternative method, proceeding via the general theory of linear operators in Hilbert space, is to be found in the treatise by Stone on this subject. Here I have adopted still another method. Proofs of these expansions by means of contour integration and the calculus of residues were given by Cauchy, and this method has been used by several authors in the ordinary Sturm-Liouville case. It is applied here to the general singular case. It is thus possible to avoid both the theory of integral equations and the general theory of linear operators, though of course we are sometimes doing no more than adapt the latter theory to the particular case considered. The ordinary Sturm-Liouville expansion is now well known. I therefore dismiss it as rapidly as possible, and concentrate on the singular cases, a class which seems to include all the most interesting examples. In order to present a clear-cut theory in a reasonable space, I have had to reject firmly all generalizations. Many of the arguments used extend quite easily to other cases, such as that of two simultaneous first-order equations. It seems that physicists are interested in some aspects of these questions. If any physicist finds here anything that he wishes to know, I shall indeed be delighted but it is to mathematicians that the book is addressed. I believe in the future of mathematics for physicists, but it seems desirable that a writer on this subject should understand physics as well as mathematics. E. C. T. Contents include: I. THE STUEM-LIOUVILLE EXPANSION ... 1 II. THE SINGULAB CASE SERIES EXPANSIONS . . 19 III. THE GENERAL SINGULAR CASE . . . .39 IV. EXAMPLES 69 V. THE NATURE OF THE SPECTRUM . . .97 VI. A SPECIAL CONVERGENCE THEOREM . . .118 VII. THE DISTRIBUTION OF THE EIGENVALUES . . 124 VIII. FURTHER APPROXIMATIONS TO JV A . . .135 IX. CONVERGENCE OF THE SERIES EXPANSION UNDER FOUBIER CONDITIONS 148 X. SUMMABILITY OF THE SERIES EXPANSION . . 163 REFERENCES 172 THE STURM-LIOUVILLE EXPANSION 1.1. I
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,21 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,20 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781443720632_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781443720632
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
HRD. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781443720632
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 419. Nº de ref. del artículo: C9781443720632
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781443720632
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 5883796-n
Cantidad disponible: Más de 20 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Hardback or Cased Book. Condición: New. Elgenfunction Expansions Associated with Second Order Differential Equations 0.85. Book. Nº de ref. del artículo: BBS-9781443720632
Cantidad disponible: 5 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 5883796
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 5883796-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 5883796
Cantidad disponible: Más de 20 disponibles