Chapter 1. Review of Univariate Probability.- Chapter 2. Multivariate Discrete Distributions.- Chapter 3. Multidimensional Densities.- Chapter 4. Advance Distribution Theory.- Chapter 5. Multivariate Normal and Related Distributions.- Chapter 6. Finite Sample Theory of Order Statistics and Extremes.- Chapter 7. Essential Asymptotics and Applications.- Chapter 8. Characteristic Functions and Applications.- Chapter 9. Asymptotics of Extremes and Order Statistics.- Chapter 10. Markov Chains and Applications.- Chapter 11. Random Walks.- Chapter 12. Brownian Motion and Gaussian Processes.- Chapter 13. Posson Processes and Applications.- Chapter 14. Discrete Time Martingales and Concentration Inequalities.- Chapter 15. Probability Metrics.- Chapter 16. Empirical Processes and VC Theory.- Chapter 17. Large Deviations.- Chapter 18. The Exponential Family and Statistical Applications.- Chapter 19. Simulation and Markov Chain Monte Carlo.- Chapter 20. Useful Tools for Statistics and Machine Learning.- Appendix A. Symbols, Useful Formulas, and Normal Table.
"Sinopsis" puede pertenecer a otra edición de este libro.
Anirban DasGupta has been professor of statistics at Purdue University since 1994. He is the author of Springer's Asymptotic Theory of Probability and Statistics, and Fundamentals of Probability, A First Course. He is an associate editor of the Annals of Statistics and has also served on the editorial boards of JASA, Journal of Statistical Planning and Inference, International Statistical Review, Statistics Surveys, Sankhya, and Metrika. He has edited four research monographs, and has recently edited the selected works of Debabrata Basu. He was elected a Fellow of the IMS in 1993, is a former member of the IMS Council, and has authored a total of 105 monographs and research articles.
This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance.
This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 3,40 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 13,85 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: TextbookRush, Grandview Heights, OH, Estados Unidos de America
Condición: Good. Nº de ref. del artículo: 48154547
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441996336_new
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530297727
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781441996336
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Unification of probability, statistics, and machine learning tools provides a complete background for teaching and future research inmultiple areasLucid and encyclopedic coverage allows the user to find and conceptually understand numerous topics . Nº de ref. del artículo: 4176740
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance.This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability. 784 pp. Englisch. Nº de ref. del artículo: 9781441996336
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 804. Nº de ref. del artículo: 263022908
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 804 48 Illus. Nº de ref. del artículo: 5873635
Cantidad disponible: 4 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a versatile and lucid treatment of classic as well as modern probability theory, while integrating them with core topics in statistical theory and also some key tools in machine learning. It is written in an extremely accessible style, with elaborate motivating discussions and numerous worked out examples and exercises. The book has 20 chapters on a wide range of topics, 423 worked out examples, and 808 exercises. It is unique in its unification of probability and statistics, its coverage and its superb exercise sets, detailed bibliography, and in its substantive treatment of many topics of current importance.This book can be used as a text for a year long graduate course in statistics, computer science, or mathematics, for self-study, and as an invaluable research reference on probabiliity and its applications. Particularly worth mentioning are the treatments of distribution theory, asymptotics, simulation and Markov Chain Monte Carlo, Markov chains and martingales, Gaussian processes, VC theory, probability metrics, large deviations, bootstrap, the EM algorithm, confidence intervals, maximum likelihood and Bayes estimates, exponential families, kernels, and Hilbert spaces, and a self contained complete review of univariate probability. Nº de ref. del artículo: 9781441996336
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 804. Nº de ref. del artículo: 183022902
Cantidad disponible: 4 disponibles