Detailed summary of exercise sections Preface Introduction 1.1. Basic notions of topology and function spaces 1.1.1. Topologies, axioms of separation and a glance at Cp(X) 1.1.2. Products, cardinal functions and convergence 1.1.3. Metrizability and completeness 1.1.4. Compactness type properties in function spaces 1.1.5. More on completeness. Realcompact spaces Bibliographic notes 1.2. Solutions of problems 1.001-1.500 1.3. Bonus results: some hidden statements 1.3.1. Standard spaces 1.3.2. Metrizable spaces and compact spaces 1.3.3. Properties of continuous maps 1.3.4. Covering properties, normality and open families 1.3.5. Product spaces and cardinal invariants 1.3.6. Raznoie (unclassified results) 1.4. Open problems 1.4.1. Local properties 1.4.2. Discreteness of X and completeness of Cp(X) 1.4.3. Dense subspaces 1.4.4. The Lindelöf property in X and Cp(X) 1.4.5. Other covering properties 1.4.6. Mappings which involve Cp-spaces 1.4.7. Very general questions 1.4.8. Fuzzy questions 1.4.9. Naïve questions 1.4.10. Raznoie (unclassified questions) 1.5. Bibliography 1.6. List of special symbols 1.7. Index
"Sinopsis" puede pertenecer a otra edición de este libro.
(Ningún ejemplar disponible)
Buscar: Crear una petición¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.
Crear una petición