The Volume on Advances in Steiner Trees is divided into two sections. The first section of the book includes papers on the general geometric Steiner tree problem in the plane and higher dimensions. The second section of the book includes papers on the Steiner problem on graphs. The general geometric Steiner tree problem assumes that you have a given set of points in some d-dimensional space and you wish to connect the given points with the shortest network possible. The given set ofpoints are 3 Figure 1: Euclidean Steiner Problem in E usually referred to as terminals and the set ofpoints that may be added to reduce the overall length of the network are referred to as Steiner points. What makes the problem difficult is that we do not know a priori the location and cardinality ofthe number ofSteiner points. Thus)the problem on the Euclidean metric is not known to be in NP and has not been shown to be NP-Complete. It is thus a very difficult NP-Hard problem.
"Sinopsis" puede pertenecer a otra edición de este libro.
The Volume on Advances in Steiner Trees is divided into two sections. The first section of the book includes papers on the general geometric Steiner tree problem in the plane and higher dimensions. The second section of the book includes papers on the Steiner problem on graphs. The general geometric Steiner tree problem assumes that you have a given set of points in some d-dimensional space and you wish to connect the given points with the shortest network possible. The given set ofpoints are 3 Figure 1: Euclidean Steiner Problem in E usually referred to as terminals and the set ofpoints that may be added to reduce the overall length of the network are referred to as Steiner points. What makes the problem difficult is that we do not know a priori the location and cardinality ofthe number ofSteiner points. Thus)the problem on the Euclidean metric is not known to be in NP and has not been shown to be NP-Complete. It is thus a very difficult NP-Hard problem.
This book presents an up-to-date set of contributions by the most influential authors on the Steiner Tree problem. The authors address the latest concerns of Steiner Trees for their computational complexity, design of algorithms, performance guaranteed heuristics, computational experimentation, and range of applications.
Audience: The book is intended for advanced undergraduates, graduates and research scientists in Combinational Optimization and Computer Science. It is divided into two sections: Part I includes papers on the general geometric Steiner Tree problem in the plane and higher dimensions; Part II includes papers on the Steiner problem on graphs which has significant import to Steiner Tree applications.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530296242
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441948243_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The Volume on Advances in Steiner Trees is divided into two sections. The first section of the book includes papers on the general geometric Steiner tree problem in the plane and higher dimensions. The second section of the book includes papers on the Steiner problem on graphs. The general geometric Steiner tree problem assumes that you have a given set of points in some d-dimensional space and you wish to connect the given points with the shortest network possible. The given set ofpoints are 3 Figure 1: Euclidean Steiner Problem in E usually referred to as terminals and the set ofpoints that may be added to reduce the overall length of the network are referred to as Steiner points. What makes the problem difficult is that we do not know a priori the location and cardinality ofthe number ofSteiner points. Thus)the problem on the Euclidean metric is not known to be in NP and has not been shown to be NP-Complete. It is thus a very difficult NP-Hard problem. 336 pp. Englisch. Nº de ref. del artículo: 9781441948243
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The Volume on Advances in Steiner Trees is divided into two sections. The first section of the book includes papers on the general geometric Steiner tree problem in the plane and higher dimensions. The second section of the book includes papers on the Stein. Nº de ref. del artículo: 4175152
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 336. Nº de ref. del artículo: 263064234
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 539. Nº de ref. del artículo: C9781441948243
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 336 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5865077
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 336. Nº de ref. del artículo: 183064224
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 336 pages. 9.00x6.00x0.76 inches. In Stock. Nº de ref. del artículo: x-1441948244
Cantidad disponible: 2 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Advances in Steiner Trees | Ding-Zhu Du (u. a.) | Taschenbuch | xii | Englisch | 2010 | Springer | EAN 9781441948243 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 107252139
Cantidad disponible: 5 disponibles