This book introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This approach applies not only to model problems on rectangular grids but also to more realistic applications with complicated grids and domains and discontinuous coefficients.
This second edition offers improved content and provides more explanation for the non-expert.
"Sinopsis" puede pertenecer a otra edición de este libro.
Multigrid methods are often used for solving partial differential equations. This book introduces and analyzes the multigrid approach. The approach used here applies to both test problems on rectangular grids and to more realistic applications with complicated grids and domains.
Key Features of this Second Edition:
- Discusses multigrid methods from the domain decomposition viewpoint, thus making the material accessible to beginning undergraduate/graduate students
- Uses the semialgebraic multigrid approach to handle complex topics (such as the solution of systems of PDEs)
- Provides relevant and insightful exercises at the end of each chapter which help reinforce the material
- Uses numerous illustrations and examples to motivate the subject matter
- Covers important applications in physics, engineering and computer science
Matrix-Based Multigrid can serve as a textbook for courses in numerical linear algebra, numerical methods for PDEs, and computational physics at the advanced undergraduate and graduate levels. Since most of the background material is covered, the only prerequisites are elementary linear algebra and calculus.
Excerpts from the reviews of the first edition:
"This book contains a wealth of information about using multilevel methods to solve partial differential equations (PDEs). . . A common matrix-based framework for developing these methods is used throughout the book. This approach allows methods to be developed for problems under three very different conditions. . . This book will be insightful for practitioners in the field. . . students will enjoy studying this book to see how the many puzzle pieces of the multigrid landscape fit together." (Loyce Adams, SIAM review, Vol. 47(3), 2005)
"The discussion very often includes important applications in physics, engineering, and computer science. The style is clear, the details can be understood without any serious prerequisite. The usage of multigrid method for unstructured grids is exhibited by a well commented C++ program. This way the book is suitable for anyone . . . who needs numerical solution of partial differential equations." (Peter Hajnal, Acta Scientiarum Mathematicarum, Vol. 70, 2004)
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 2,27 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 11878249-n
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Matrix-Based Multigrid introduces and analyzes the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. Special attention is given to the powerful matrix-based-multigrid approach, which is particularly useful for problems with variable coefficients and nonsymmetric and indefinite problems. This book can be used as a textbook in courses in numerical analysis, numerical linear algebra, and numerical PDEs at the advanced undergraduate and graduate levels in computer science, math, and applied math departments. The theory is written in simple algebraic terms and therefore requires preliminary knowledge only in basic linear algebra and calculus. This book introduces the multigrid approach for the numerical solution of large sparse linear systems arising from the discretization of elliptic partial differential equations. This new edition offers improved content and more explanation for the non-expert. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781441943217
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: DB-9781441943217
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: DB-9781441943217
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530295787
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11878249
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 11878249-n
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 344 2nd Edition. Nº de ref. del artículo: 263103008
Cantidad disponible: 4 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11878249
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. Nº de ref. del artículo: B9781441943217
Cantidad disponible: 1 disponibles