If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense.
"Sinopsis" puede pertenecer a otra edición de este libro.
If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase? Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings? If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex? If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well? If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey? If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions? These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,69 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points? Of the smallest circle containing 4 points? Why do Brownian sample paths have local maxima but not points o. Nº de ref. del artículo: 4173549
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points Of the smallest circle containing 4 points Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense. 292 pp. Englisch. Nº de ref. del artículo: 9781441930880
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points Of the smallest circle containing 4 points Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense. Nº de ref. del artículo: 9781441930880
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441930880_new
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -If you place a large number of points randomly in the unit square, what is the distribution of the radius of the largest circle containing no points Of the smallest circle containing 4 points Why do Brownian sample paths have local maxima but not points of increase, and how nearly do they have points of increase Given two long strings of letters drawn i. i. d. from a finite alphabet, how long is the longest consecutive (resp. non-consecutive) substring appearing in both strings If an imaginary particle performs a simple random walk on the vertices of a high-dimensional cube, how long does it take to visit every vertex If a particle moves under the influence of a potential field and random perturbations of velocity, how long does it take to escape from a deep potential well If cars on a freeway move with constant speed (random from car to car), what is the longest stretch of empty road you will see during a long journey If you take a large i. i. d. sample from a 2-dimensional rotationally-invariant distribution, what is the maximum over all half-spaces of the deviation between the empirical and true distributions These questions cover a wide cross-section of theoretical and applied probability. The common theme is that they all deal with maxima or min ima, in some sense.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch. Nº de ref. del artículo: 9781441930880
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 438. Nº de ref. del artículo: C9781441930880
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530294691
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 288. Nº de ref. del artículo: 263059096
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 288 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5837383
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 288. Nº de ref. del artículo: 183059090
Cantidad disponible: 4 disponibles