This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.
"Sinopsis" puede pertenecer a otra edición de este libro.
From the reviews:
"Have you ever wondered about whether one can define differential derivative of non integer order and how useful these fractal derivatives would be? If the answer is yes this is the book to look at. The book is written by physicists with a pragmatic audience in mind. It contains a very thorough and clearly written discussion of the mathematical foundation as well as the applications to important and interesting mathematical and physical problems. All the topics are very main stream and of great general relevance...
"I am glad I got to know this book. I don't know yet whether fractal calculus will be of crucial importance to my own research in statistical mechanics and complex systems. But I got the feeling from this book that this might very well be the case. And if this happens, I now know exactly where to go for a highly readable and thorough introduction to the field. I think the book deserves to be present in mathematics and physics libraries. And I believe many interesting undergraduate and graduate projects in mathematics and its applications can start out from this book."
- UK Nonlinear News
"The book is written by physicists with a pragmatic audience in mind. It contains a very thorough and clearly written discussion of the mathematical foundation as well as the applications to important and interesting mathematical and physical problems. All the topics are very mainstream and of great general relevance. ... Obviously, the book is also of great relevance to the researcher who may need to become acquainted with Fractal Calculus ... . I am glad I got to know this book." (Henrik Jensen, UK Nonlinear News, February, 2004)
"Physics of Fractal Operators ... is a timely introduction that discusses the basics of fractional calculus. ... Physics of Fractal Operators, which actively promotes the use of fractional calculus in physics, may help teachers develop an appropriate curriculum. ... the book’s abundance of material makes it very useful to researchers working in the field of complex systems and stochastic processes. It should help those who want to teach fractional calculus and it will definitely motivate those who want to learn ... ." (Igor M. Sokolov, Physics Today, December, 2003)
"The main merit of this well-written book is that it brings out rather clearly the relevance of the fractional calculus leading to the fractal operators and fractal functions. ... Each chapter contains an extensive list of relevant references. ... The overall style of presentation of the material covered in this book makes it rather useful for physicists and applied mathematicians carrying out a self-study of the fractal calculus and its applications." (Suresh V. Lawande, Mathematical Reviews, 2004 h)
"‘Physics of Fractal Operators’ is one of the great ideas books of our time. It may well become one of the most influential books with the paradigm of using fractional calculus to describe systems with emerging and evolving fractal complexities becoming widely used across the sciences. This important book should be mandatory reading for all PhD students in physics, and it should be at the side of all scientists working with fractals and complexity." (B I Henry, The Physicist, Vol. 40 (5), 2003)
"This book introduces the reader to the interesting mathematical notion of fractal operators and its usefulness to physics. ... a comprehensive, well written introduction to the subject ... useful to researchers and teachers alike. It is indeed targeted towards a wide, non specialist audience and provides the mathematical basis of fractional calculus ... . This book offers a lot of high-quality material to learn from and was definitely a very interesting and enjoyable read for me." (Yves Caudano, Physicalia, Vol. 28 (4-6), 2006)
In Chapter One we review the foundations of statistieal physies and frac tal functions. Our purpose is to demonstrate the limitations of Hamilton's equations of motion for providing a dynamical basis for the statistics of complex phenomena. The fractal functions are intended as possible models of certain complex phenomena; physical.systems that have long-time mem ory and/or long-range spatial interactions. Since fractal functions are non differentiable, those phenomena described by such functions do not have dif ferential equations of motion, but may have fractional-differential equations of motion. We argue that the traditional justification of statistieal mechan ics relies on aseparation between microscopic and macroscopie time scales. When this separation exists traditional statistieal physics results. When the microscopic time scales diverge and overlap with the macroscopie time scales, classieal statistieal mechanics is not applicable to the phenomenon described. In fact, it is shown that rather than the stochastic differential equations of Langevin describing such things as Brownian motion, we ob tain fractional differential equations driven by stochastic processes.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,11 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,19 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441930545_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In Chapter One we review the foundations of statistieal physies and frac tal functions. Our purpose is to demonstrate the limitations of Hamilton's equations of motion for providing a dynamical basis for the statistics of complex phenomena. The fractal functions are intended as possible models of certain complex phenomena; physical.systems that have long-time mem ory and/or long-range spatial interactions. Since fractal functions are non differentiable, those phenomena described by such functions do not have dif ferential equations of motion, but may have fractional-differential equations of motion. We argue that the traditional justification of statistieal mechan ics relies on aseparation between microscopic and macroscopie time scales. When this separation exists traditional statistieal physics results. When the microscopic time scales diverge and overlap with the macroscopie time scales, classieal statistieal mechanics is not applicable to the phenomenon described. In fact, it is shown that rather than the stochastic differential equations of Langevin describing such things as Brownian motion, we ob tain fractional differential equations driven by stochastic processes. 368 pp. Englisch. Nº de ref. del artículo: 9781441930545
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as sys. Nº de ref. del artículo: 4173515
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - In Chapter One we review the foundations of statistieal physies and frac tal functions. Our purpose is to demonstrate the limitations of Hamilton's equations of motion for providing a dynamical basis for the statistics of complex phenomena. The fractal functions are intended as possible models of certain complex phenomena; physical.systems that have long-time mem ory and/or long-range spatial interactions. Since fractal functions are non differentiable, those phenomena described by such functions do not have dif ferential equations of motion, but may have fractional-differential equations of motion. We argue that the traditional justification of statistieal mechan ics relies on aseparation between microscopic and macroscopie time scales. When this separation exists traditional statistieal physics results. When the microscopic time scales diverge and overlap with the macroscopie time scales, classieal statistieal mechanics is not applicable to the phenomenon described. In fact, it is shown that rather than the stochastic differential equations of Langevin describing such things as Brownian motion, we ob tain fractional differential equations driven by stochastic processes. Nº de ref. del artículo: 9781441930545
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 11861446-n
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781441930545
Cantidad disponible: 10 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 549. Nº de ref. del artículo: C9781441930545
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 11861446-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11861446
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 11861446
Cantidad disponible: Más de 20 disponibles