Artículos relacionados a Sequential Monte Carlo Methods in Practice (Information...

Sequential Monte Carlo Methods in Practice (Information Science and Statistics) - Tapa blanda

 
9781441928870: Sequential Monte Carlo Methods in Practice (Information Science and Statistics)

Sinopsis

This volume presents results in a very active area of research of interest to statisticians, engineers, and computer scientists. The emphasis is on the applications of these important methods.

"Sinopsis" puede pertenecer a otra edición de este libro.

Críticas

From the reviews:

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION

"...a remarkable, successful effort at making these ideas available to statisticians. It gives an overview, presents available theory, gives a splendid development of various bells and whistles important in practical implementation, and finally gives a large number of detailed examples and case studies...The authors and editors have been careful to write in a unified, readable way...I find it remarkable that the editors and authors have combined to produce an accessible bible that will be studied and used for years to come."

"Usually, very few volumes edited from papers contributed by many different authors result in books which can serve as either good textbooks or as useful reference. However, in the case of this book, it is enough to read the foreword by Adrian Smith to realize that this particular volume is quite different. ... it is a good reference book for SMC." (Mohan Delampady, Sankhya: Indian Journal of Statistics, Vol. 64 (A), 2002)

"In this book the authors present sequential Monte Carlo (SMC) methods ... . Over the last few years several closely related algorithms have appeared under the names ‘boostrap filters’, ‘particle filters’, ‘Monte Carlo filters’, and ‘survival of the fittest’. The book under review brings together many of these algorithms and presents theoretical developments ... . This book will be of great value to advanced students, researchers, and practitioners who want to learn about sequential Monte Carlo methods for the computational problems of Bayesian Statistics." (E. Novak, Metrika, May, 2003)

"This book provides a very good overview of the sequential Monte Carlo methods and contains many ideas on further research on methodologies and newer areas of application. ... It will be certainly a valuable reference book for students and researchers working in the area of on-line data analysis. ... the techniques discussed in this book are of great relevance to practitioners dealing with real time data." (Pradipta Sarkar, Technometrics, Vol. 45 (1), 2003)

Reseña del editor

Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
Connecting readers with great books...
Ver este artículo

EUR 3,20 gastos de envío en Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 13,85 gastos de envío desde Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Sequential Monte Carlo Methods in Practice (Information...

Imagen de archivo

Publicado por Springer, 2010
ISBN 10: 1441928871 ISBN 13: 9781441928870
Antiguo o usado paperback

Librería: HPB-Red, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_345552435

Contactar al vendedor

Comprar usado

EUR 223,07
Convertir moneda
Gastos de envío: EUR 3,20
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2010
ISBN 10: 1441928871 ISBN 13: 9781441928870
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9781441928870_new

Contactar al vendedor

Comprar nuevo

EUR 243,15
Convertir moneda
Gastos de envío: EUR 13,85
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Doucet, Arnaud|Freitas, Nando de|Gordon, Neil
Publicado por Springer New York, 2010
ISBN 10: 1441928871 ISBN 13: 9781441928870
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. - Monte Carlo Methods is a very hot area of research- Book s emphasis is on applications that span many disciplines- requires only basic knowledge of probabilityMonte Carlo methods are revolutionizing the on-line analysis of data in many fileds. Nº de ref. del artículo: 4173359

Contactar al vendedor

Comprar nuevo

EUR 250,30
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Publicado por Springer, 2010
ISBN 10: 1441928871 ISBN 13: 9781441928870
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9781441928870

Contactar al vendedor

Comprar nuevo

EUR 320,36
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Arnaud Doucet
ISBN 10: 1441928871 ISBN 13: 9781441928870
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. 616 pp. Englisch. Nº de ref. del artículo: 9781441928870

Contactar al vendedor

Comprar nuevo

EUR 299,59
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Arnaud Doucet
ISBN 10: 1441928871 ISBN 13: 9781441928870
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Monte Carlo methods are revolutionising the on-line analysis of datain fields as diverse as financial modelling, target tracking andcomputer vision. These methods, appearing under the names of bootstrapfilters, condensation, optimal Monte Carlo filters, particle filtersand survial of the fittest, have made it possible to solve numericallymany complex, non-standarard problems that were previouslyintractable.This book presents the first comprehensive treatment of thesetechniques, including convergence results and applications totracking, guidance, automated target recognition, aircraft navigationrobot navigation, econometrics, financial modelling, neuralnetworks,optimal control, optimal filtering, communicationsreinforcement learning, signal enhancement, model averaging andselection, computer vision, semiconductor design, population biologydynamic Bayesian networks, and time series analysis. This will be ofgreat value to students, researchers and practicioners, who have somebasic knowledge of probability.Arnaud Doucet received the Ph. D. degree from the University of ParisXI Orsay in 1997. From 1998 to 2000, he conducted research at theSignal Processing Group of Cambridge University, UK. He is currentlyan assistant professor at the Department of Electrical Engineering ofMelbourne University, Australia. His research interests includeBayesian statistics, dynamic models and Monte Carlo methods.Nando de Freitas obtained a Ph.D. degree in information engineeringfrom Cambridge University in 1999. He is presently a researchassociate with the artificial intelligence group of the University ofCalifornia at Berkeley. His main research interests are in Bayesianstatistics and the application of on-line and batch Monte Carlomethods to machine learning.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 616 pp. Englisch. Nº de ref. del artículo: 9781441928870

Contactar al vendedor

Comprar nuevo

EUR 299,59
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Arnaud Doucet
Publicado por Springer New York, Springer US, 2010
ISBN 10: 1441928871 ISBN 13: 9781441928870
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Monte Carlo methods are revolutionising the on-line analysis of data in fields as diverse as financial modelling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survial of the fittest, have made it possible to solve numerically many complex, non-standarard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modelling, neural networks,optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practicioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris- XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Nº de ref. del artículo: 9781441928870

Contactar al vendedor

Comprar nuevo

EUR 303,19
Convertir moneda
Gastos de envío: EUR 64,60
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito