After a brief introduction reviewing the concepts of principal ideal domains and commutative fields, the book discusses residue classes (for example, the integers mog=dulo some number m); quadratic residues; algebraic integers (that is, objects that behave like integers in arbitrary algebraic structures), their discriminant; decomposition, norm, and classes of ideals; the ramification index; and the fundamental theorem of Abelian extensions. The theorems and definitions are carefully motivated, and the author frequently stops to explain how things fit together and what will come next. There are a great many exercises and many useful examples at a
"Sinopsis" puede pertenecer a otra edición de este libro.
From the reviews of the second edition:
"This book is a thorough self-contained introduction to algebraic number theory. ... The book is aimed at graduate students. The author made a great effort to make the subject easier to understand. The proofs are very detailed, there are plenty of examples and there are exercises at the end of almost all chapters ... . The book contains a great amount of material, more than enough for a year-long course." (Gábor Megyesi, Acta Scientiarum Mathematicarum, Vol. 69, 2003)
"There is a wealth of material in this book. The approach is very classical and global. ... the author keeps his presentation self-contained. The author has made a real effort to make the book accessible to students. Proofs are given in great detail, and there are many examples and exercises. The book would serve well as a text for a graduate course in classical algebraic number theory." (Lawrence Washington, Mathematical Reviews, Issue 2002 e)
"Ribenboims’s ‘Classical Theory of Algebraic Numbers’ is an introduction to algebraic number theory on an elementary level ... . Ribenboim’s book is a well written introduction to classical algebraic number theory ... and the perfect textbook for students who need lots of examples." (Franz Lemmermeyer, Zentralblatt MATH, Vol. 1082, 2006)
The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning of more recent topics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,81 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 6,81 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781441928702
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530294506
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441928702_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The exposition of the classical theory of algebraic numbers is clear and thorough, and there isa large number of exercises as well as worked out numerical examples.A careful study of this book will provide a solid background to the learning of more recent topics. 708 pp. Englisch. Nº de ref. del artículo: 9781441928702
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The exposition of the classical theory of algebraic numbers is clear and thorough, and there is a large number of exercises as well as worked out numerical examples. A careful study of this book will provide a solid background to the learning o. Nº de ref. del artículo: 4173343
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1006. Nº de ref. del artículo: C9781441928702
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 708 2nd Edition. Nº de ref. del artículo: 263114396
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 708 9 Illus. Nº de ref. del artículo: 5782083
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 708. Nº de ref. del artículo: 183114390
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Gauss created the theory of binary quadratic forms in 'Disquisitiones Arithmeticae' and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem. These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others. This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography. This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples. The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields. Part One is devoted to residue classes and quadratic residues. In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, inertia and ramification of ideals. Part Three is devoted to Kummer's theory of cyclomatic fields, and includes Bernoulli numbers and the proof of Fermat's Last Theorem for regular prime exponents. Finally, in Part Four, the emphasis is on analytical methods and it includes Dinchlet's Theorem on primes in arithmetic progressions, the theorem of Chebotarev and class number formulas. A careful study of this book will provide a solid background to the learning of more recent topics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 708 pp. Englisch. Nº de ref. del artículo: 9781441928702
Cantidad disponible: 2 disponibles