This research monograph develops the Hamilton-Jacobi-Bellman theory via dynamic programming principle for a class of optimal control problems for stochastic hereditary differential equations (SHDEs) driven by a standard Brownian motion and with a bounded or an infinite but fading memory. These equations represent a class of stochastic infinite-dimensional systems that become increasingly important and have wide range of applications in physics, chemistry, biology, engineering and economics/finance. This monograph covers a very active research area. It can be used as a research reference for researchers and advanced graduate students who have special interest in optimal control theory and applications of stochastic hereditary systems.
"Sinopsis" puede pertenecer a otra edición de este libro.
This research monograph develops the Hamilton-Jacobi-Bellman (HJB) theory through dynamic programming principle for a class of optimal control problems for stochastic hereditary differential systems. It is driven by a standard Brownian motion and with a bounded memory or an infinite but fading memory.
The optimal control problems treated in this book include optimal classical control and optimal stopping with a bounded memory and over finite time horizon.
This book can be used as an introduction for researchers and graduate students who have a special interest in learning and entering the research areas in stochastic control theory with memories. Each chapter contains a summary.
Mou-Hsiung Chang is a program manager at the Division of Mathematical Sciences for the U.S. Army Research Office.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530294292
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph develops the Hamilton-Jacobi-Bellman theory via dynamic programming principle for a class of optimal control problems for stochastic hereditary differential equations (SHDEs) driven by a standard Brownian motion and with a bounded or an infinite but fading memory. These equations represent a class of stochastic infinite-dimensional systems that become increasingly important and have wide range of applications in physics, chemistry, biology, engineering and economics/finance. This monograph can be used as a reference for those who have special interest in optimal control theory and applications of stochastic hereditary systems. 424 pp. Englisch. Nº de ref. del artículo: 9781441926050
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Very active research areaChang bridges area of stochastic control and stochastic delay equationsThis monograph develops the Hamilton-Jacobi-Bellman theory via dynamic programming principle for a class of optimal control problems for sto. Nº de ref. del artículo: 4173112
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 426. Nº de ref. del artículo: 263070647
Cantidad disponible: 4 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441926050_new
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 426 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5858664
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 426. Nº de ref. del artículo: 183070653
Cantidad disponible: 4 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Stochastic Control of Hereditary Systems and Applications | Mou-Hsiung Chang | Taschenbuch | xviii | Englisch | 2010 | Humana | EAN 9781441926050 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 107207919
Cantidad disponible: 5 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -ThisresearchmonographdevelopstheHamilton-Jacobi-Bellman(HJB)theory viathedynamicprogrammingprincipleforaclassofoptimalcontrolproblems for stochastic hereditary di erential equations (SHDEs) driven by a standard Brownian motion and with a bounded or an unbounded but fading m- ory. These equations represent a class of in nite-dimensional stochastic s- tems that become increasingly important and have wide range of applications in physics, chemistry, biology, engineering, and economics/ nance. The wide applicability of these systems is due to the fact that the reaction of re- world systems to exogenous e ects/signals is never ¿instantaneous¿ and it needs some time, time that can be translated into a mathematical language by some delay terms. Therefore, to describe these delayed e ects, the drift and di usion coe cients of these stochastic equations depend not only on the current state but also explicitly on the past history of the state variable. The theory developed herein extends the nite-dimensional HJB theory of controlled di usion processes to its in nite-dimensional counterpart for c- trolledSHDEsinwhichacertainin nite-dimensionalBanachspaceorHilbert space is critically involved in order to account for the bounded or unbounded memory. Another type of in nite-dimensional HJB theory that is not treated in this monograph but arises from real-world application problems can often be modeled by controlled stochastic partial di erential equations. Although they are both in nite dimensional in nature and are both in the infancy of their developments, the SHDE exhibits many characteristics that are not in common with stochastic partial di erential equations. Consequently, the HJB theory for controlled SHDEs is parallel to and cannot betreated as a subset of the theory developed for controlled stochastic partial di erential equations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 424 pp. Englisch. Nº de ref. del artículo: 9781441926050
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 406 pages. 9.00x6.00x0.96 inches. In Stock. Nº de ref. del artículo: x-1441926054
Cantidad disponible: 2 disponibles