This book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a firm foundation for the study of all spaces of analytic functions and of the operators on them.
"Sinopsis" puede pertenecer a otra edición de este libro.
The subject of this book is operator theory on the Hardy space H2, also called the Hardy-Hilbert space. This is a popular area, partially because the Hardy-Hilbert space is the most natural setting for operator theory. A reader who masters the material covered in this book will have acquired a firm foundation for the study of all spaces of analytic functions and of operators on them. The goal is to provide an elementary and engaging introduction to this subject that will be readable by everyone who has understood introductory courses in complex analysis and in functional analysis. The exposition, blending techniques from "soft" and "hard" analysis, is intended to be as clear and instructive as possible. Many of the proofs are very elegant.
This book evolved from a graduate course that was taught at the University of Toronto. It should prove suitable as a textbook for beginning graduate students, or even for well-prepared advanced undergraduates, as well as for independent study. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,35 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a firm foundation for the study of all spaces of analytic functions and of the operators on them. Blending techniques from 'soft' and 'hard' analysis, the book contains clear and beautiful proofs. There are numerous exercises at the end of each chapter, along with a brief guide for further study which includes references to applications to topics in engineering. 236 pp. Englisch. Nº de ref. del artículo: 9781441922533
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. More elementary than the competitionContains clear and beautiful proofsHas been class-tested a number of timesThis book offers an elementary and engaging introduction to operator theory on the Hardy-Hilbert space. It provides a f. Nº de ref. del artículo: 4172780
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781441922533_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The great mathematician G. H. Hardy told us that 'Beauty is the rst test: there is no permanent place in the world for ugly mathematics' (see [24, p. 85]). It is clear why Hardy loved complex analysis: it is a very beautiful partofclassicalmathematics. ThetheoryofHilbertspacesandofoperatorson themisalmostasclassicalandisperhapsasbeautifulascomplexanalysis. The studyoftheHardy-Hilbertspace(aHilbertspacewhoseelementsareanalyt ic functions), and of operators on that space, combines these two subjects. The interplay produces a number of extraordinarily elegant results. For example, very elementary concepts from Hilbert space provide simple proofs of the Poisson integral (Theorem 1. 1. 21 below) and Cauchy integral (Theorem 1. 1. 19) formulas. The fundamental theorem about zeros of fu- tions in the Hardy-Hilbert space (Corollary 2. 4. 10) is the central ingredient of a beautiful proof that every continuous function on [0,1] can be uniformly approximated by polynomials with prime exponents (Corollary 2. 5. 3). The Hardy-Hilbert space context is necessary to understand the structure of the invariant subspaces of the unilateral shift (Theorem 2. 2. 12). Conversely, pr- erties of the unilateral shift operator are useful in obtaining results on f- torizations of analytic functions (e. g. , Theorem 2. 3. 4) and on other aspects of analytic functions (e. g. , Theorem 2. 3. 3). The study of Toeplitz operators on the Hardy-Hilbert space is the most natural way of deriving many of the properties of classical Toeplitz mat- ces (e. g. , Theorem 3. 3. Nº de ref. del artículo: 9781441922533
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9781441922533
Cantidad disponible: 10 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 388. Nº de ref. del artículo: C9781441922533
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. xii + 220. Nº de ref. del artículo: 263091665
Cantidad disponible: 4 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The great mathematician G. H. Hardy told us that ¿Beauty is the rst test: there is no permanent place in the world for ugly mathematics¿ (see [24, p. 85]). It is clear why Hardy loved complex analysis: it is a very beautiful partofclassicalmathematics. ThetheoryofHilbertspacesandofoperatorson themisalmostasclassicalandisperhapsasbeautifulascomplexanalysis. The studyoftheHardy¿Hilbertspace(aHilbertspacewhoseelementsareanalytic functions), and of operators on that space, combines these two subjects. The interplay produces a number of extraordinarily elegant results. For example, very elementary concepts from Hilbert space provide simple proofs of the Poisson integral (Theorem 1. 1. 21 below) and Cauchy integral (Theorem 1. 1. 19) formulas. The fundamental theorem about zeros of fu- tions in the Hardy¿Hilbert space (Corollary 2. 4. 10) is the central ingredient of a beautiful proof that every continuous function on [0,1] can be uniformly approximated by polynomials with prime exponents (Corollary 2. 5. 3). The Hardy¿Hilbert space context is necessary to understand the structure of the invariant subspaces of the unilateral shift (Theorem 2. 2. 12). Conversely, pr- erties of the unilateral shift operator are useful in obtaining results on f- torizations of analytic functions (e. g. , Theorem 2. 3. 4) and on other aspects of analytic functions (e. g. , Theorem 2. 3. 3). The study of Toeplitz operators on the Hardy¿Hilbert space is the most natural way of deriving many of the properties of classical Toeplitz mat- ces (e. g. , Theorem 3. 3.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 236 pp. Englisch. Nº de ref. del artículo: 9781441922533
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 220 pages. 9.00x6.00x0.54 inches. In Stock. Nº de ref. del artículo: x-1441922539
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. xii + 220. Nº de ref. del artículo: 5804814
Cantidad disponible: 4 disponibles