Artículos relacionados a Noisy Optimization with Evolution Strategies: v. 8...

Noisy Optimization with Evolution Strategies: v. 8 (Genetic Algorithms and Evolutionary Computation) - Tapa dura

 
9781402071058: Noisy Optimization with Evolution Strategies: v. 8 (Genetic Algorithms and Evolutionary Computation)

Esta edición ISBN ya no está disponible.

Sinopsis

Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise.

Noisy Optimization with Evolution Strategies contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation.

This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms.

Noisy Optimization with Evolution Strategies is an invaluable resource for researchers and practitioners of evolutionary algorithms.

"Sinopsis" puede pertenecer a otra edición de este libro.

Críticas

From the reviews:

"[...]a highly interesting book recommendable to anyone interested in evolutionary optimization and to those facing noisy optimization problems."
(Hans-Georg Beyer)

"The book addresses one of the most pressing and interesting topics in evolutionary computation research – the performance of evolutional algorithms in uncertain environments ... . Summing up, the book appears to be an interesting theoretical complement to many existing books describing practical applications of evolutionary computations." (Jacek Blazewicz, Zentralblatt MATH, Vol. 1103 (5), 2007)

Reseña del editor

Noise is a common factor in most real-world optimization problems. Sources of noise can include physical measurement limitations, stochastic simulation models, incomplete sampling of large spaces, and human-computer interaction. Evolutionary algorithms are general, nature-inspired heuristics for numerical search and optimization that are frequently observed to be particularly robust with regard to the effects of noise.

Noisy Optimization with Evolution Strategies contributes to the understanding of evolutionary optimization in the presence of noise by investigating the performance of evolution strategies, a type of evolutionary algorithm frequently employed for solving real-valued optimization problems. By considering simple noisy environments, results are obtained that describe how the performance of the strategies scales with both parameters of the problem and of the strategies considered. Such scaling laws allow for comparisons of different strategy variants, for tuning evolution strategies for maximum performance, and they offer insights and an understanding of the behavior of the strategies that go beyond what can be learned from mere experimentation.

This first comprehensive work on noisy optimization with evolution strategies investigates the effects of systematic fitness overvaluation, the benefits of distributed populations, and the potential of genetic repair for optimization in the presence of noise. The relative robustness of evolution strategies is confirmed in a comparison with other direct search algorithms.

Noisy Optimization with Evolution Strategies is an invaluable resource for researchers and practitioners of evolutionary algorithms.

"Sobre este título" puede pertenecer a otra edición de este libro.

(Ningún ejemplar disponible)

Buscar:



Crear una petición

¿No encuentra el libro que está buscando? Seguiremos buscando por usted. Si alguno de nuestros vendedores lo incluye en IberLibro, le avisaremos.

Crear una petición

Otras ediciones populares con el mismo título

9781461353973: Noisy Optimization With Evolution Strategies: 8 (Genetic Algorithms and Evolutionary Computation)

Edición Destacada

ISBN 10:  1461353971 ISBN 13:  9781461353973
Editorial: Springer, 2012
Tapa blanda