Actuating materials hold a promise for fast-spreading applications in smart structures and active control systems, and have attracted extensive attention from scientists of both mechanics and materials sciences communities. High performance and stability of actuating materials and structures play a decisive role in their successive applications as sensors and actuators in structural control and robotics. The advances of actuating materials, however, recently encountered a severe reliability issue. For a better understanding toward this issue, scientific efforts are of paramount significance to gain a deep insight into the intricate deformation and failure behaviors of actuating materials. To examine the state of the art in this subject, the general assembly of IUTAM approved in August, 2002 at Cambridge University, UK, a proposal to hold an IUTAM symposium to summarize the relevant research findings. The main themes of the symposium are: (i) the constitutive relations of actuating materials that couple mechanical, electrical, thermal and magnetic properties, as well as incorporate phase transformation and domain switch; (ii) the physical mechanisms of deformation, damage, and fatigue crack growth of actuating materials; (iii) the development of failure-resilient approaches that base on the macro-, meso-, and micro-mechanics analyses; (iv) the investigation of microstructural evolution, stability of phase transformation, and size effects of ferroelectric ceramics, shape memory alloys, actuating polymers, and bio-actuating materials. The above problems represent an exciting challenge and form a research thrust of both materials science and solid mechanics. The IUTAM Symposium (GA.
"Sinopsis" puede pertenecer a otra edición de este libro.
Actuating materials hold a promise for fast-spreading applications in smart structures and active control systems, and have attracted extensive attention from scientists of both mechanics and materials sciences communities. High performance and stability of actuating materials and structures play a decisive role in their successive applications as sensors and actuators in structural control and robotics. The advances of actuating materials, however, recently encountered a severe reliability issue. For a better understanding toward this issue, scientific efforts are of paramount significance to gain a deep insight into the intricate deformation and failure behaviors of actuating materials. To examine the state of the art in this subject, the general assembly of IUTAM approved in August, 2002 at Cambridge University, UK, a proposal to hold an IUTAM symposium to summarize the relevant research findings. The main themes of the symposium are: (i) the constitutive relations of actuating materials that couple mechanical, electrical, thermal and magnetic properties, as well as incorporate phase transformation and domain switch; (ii) the physical mechanisms of deformation, damage, and fatigue crack growth of actuating materials; (iii) the development of failure-resilient approaches that base on the macro-, meso-, and micro-mechanics analyses; (iv) the investigation of microstructural evolution, stability of phase transformation, and size effects of ferroelectric ceramics, shape memory alloys, actuating polymers, and bio-actuating materials. The above problems represent an exciting challenge and form a research thrust of both materials science and solid mechanics. The IUTAM Symposium (GA.
This book summarizes the research findings as an outcome from the IUTAM Symposium "Mechanics and Reliability of Actuating Materials held successfully on September 1-3, 2004 at Tsinghua University, Beijing, China. Actuating materials hold a promise for fast-spreading applications in smart structures and active control systems, and have attracted extensive attention from scientists of both mechanics and materials sciences communities. High performance and stability of actuating materials and structures play a decisive role in their successive applications as sensors and actuators in structural control and robotics. Toward this end, scientific efforts are of paramount significance to gain a deep insight into the intricate deformation and failure behaviors of actuating materials. Examples worthy of intensive exploration are: (1) the constitutive relations of actuating materials that couple mechanical, electrical, thermal and magnetic properties, as well as incorporate phase transformation and domain switch; (2) the physical mechanisms of deformation, damage, and fatigue crack growth of actuating materials; (3) the development of failure-resilient approaches that base on the macro-, meso-, and micro-mechanics analyses; (4) the investigation of microstructural evolution, stability of phase transformation, and size effects of ferroelectric ceramics, shape memory alloys and actuating polymers. The above problems represent an exciting challenge and form a research thrust of both materials science and solid mechanics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 30,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,59 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
2006th ed. 16 x 24 cm. 334 pages. HC Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Nº de ref. del artículo: 8822VB
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9781402041303
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 4032995-n
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530143135
Cantidad disponible: Más de 20 disponibles
Librería: Studibuch, Stuttgart, Alemania
hardcover. Condición: Gut. 334 Seiten; 9781402041303.3 Gewicht in Gramm: 1. Nº de ref. del artículo: 922771
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781402041303_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Actuating materials hold a promise for fast-spreading applications in smart structures and active control systems, and have attracted extensive attention from scientists of both mechanics and materials sciences communities. High performance and stability of actuating materials and structures play a decisive role in their successive applications as sensors and actuators in structural control and robotics. The advances of actuating materials, however, recently encountered a severe reliability issue. For a better understanding toward this issue, scientific efforts are of paramount significance to gain a deep insight into the intricate deformation and failure behaviors of actuating materials. To examine the state of the art in this subject, the general assembly of IUTAM approved in August, 2002 at Cambridge University, UK, a proposal to hold an IUTAM symposium to summarize the relevant research findings. The main themes of the symposium are: (i) the constitutive relations of actuating materials that couple mechanical, electrical, thermal and magnetic properties, as well as incorporate phase transformation and domain switch; (ii) the physical mechanisms of deformation, damage, and fatigue crack growth of actuating materials; (iii) the development of failure-resilient approaches that base on the macro-, meso-, and micro-mechanics analyses; (iv) the investigation of microstructural evolution, stability of phase transformation, and size effects of ferroelectric ceramics, shape memory alloys, actuating polymers, and bio-actuating materials. The above problems represent an exciting challenge and form a research thrust of both materials science and solid mechanics. The IUTAM Symposium (GA. 336 pp. Englisch. Nº de ref. del artículo: 9781402041303
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 307. Nº de ref. del artículo: 264543503
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 4032995-n
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 307. Nº de ref. del artículo: 3337168
Cantidad disponible: 1 disponibles