Civil infrastructure systems are generally the most expensive assets in any country, and these systems are deteriorating at an alarming rate. In addition, these systems have a long service life in comparison to most other commercial products. As well, the introduction of intelligent materials and innovative design approaches in these systems is painfully slow due to heavy relianceon traditional construction and maintenance practices, and the conservative nature of design codes. Feedback on the "state of the health" of constructed systems is practically nonexistent. In the quest for lighter, stronger and corrosion-resistant structures, the replacement of ferrous materials by high-strength fibrous ones is being actively pursued in several countries around the world, both with respect to the design of new structures as well as for the rehabilitation and strengthening of existing ones. In North America, active research in the design of new highway bridges is focused on a number of specialty areas, including the replacement of steel reinforcing bars in concrete deck slabs by randomly distributed low-modulus fibers, and the replacement of steel prestressing cables for concrete components by tendons comprising super-strong fibers. Research is also being conducted on using FRPs to repair and strengthen existing structures.
"Sinopsis" puede pertenecer a otra edición de este libro.
Civil infrastructure systems are generally the most expensive assets in any country, and these systems are deteriorating at an alarming rate. In addition, these systems have a long service life in comparison to most other commercial products. As well, the introduction of intelligent materials and innovative design approaches in these systems is painfully slow due to heavy relianceon traditional construction and maintenance practices, and the conservative nature of design codes. Feedback on the "state of the health" of constructed systems is practically nonexistent. In the quest for lighter, stronger and corrosion-resistant structures, the replacement of ferrous materials by high-strength fibrous ones is being actively pursued in several countries around the world, both with respect to the design of new structures as well as for the rehabilitation and strengthening of existing ones. In North America, active research in the design of new highway bridges is focused on a number of specialty areas, including the replacement of steel reinforcing bars in concrete deck slabs by randomly distributed low-modulus fibers, and the replacement of steel prestressing cables for concrete components by tendons comprising super-strong fibers. Research is also being conducted on using FRPs to repair and strengthen existing structures.
This book provides information about the application of Structural Health Monitoring technologies to civil engineering structures including buildings, bridges, tunnels, dams, and pavements. The book is unique as it covers application of a broad spectrum of sensors for monitoring of cracks, deformations, loads, and other types of structural anomalies. The range of sensors covered includes conventional as well as novel sensors such as resistance type strain gauges, PZT, magnetic, fiber optics and smart materials. The book describes post earthquake structural health monitoring of historic structures such as masonry towers, real time monitoring of modem cable stayed structures and various construction materials including steel, concrete, and fiber reinforced polymer composites (FRP). It covers distributed and multiplexing schemes for monitoring of large structures, data acquisition and processing as well as techniques for interpretation of data. A specific section is dedicated to issues concerning sensor and instrumentation reliability and durability during sensor placement in harsh construction environment, adverse exposure conditions, and long term performance.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 105,00 gastos de envío desde Alemania a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,41 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 2933061/2
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530142928
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 3544762-n
Cantidad disponible: 15 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Civil infrastructure systems are generally the most expensive assets in any country, and these systems are deteriorating at an alarming rate. In addition, these systems have a long service life in comparison to most other commercial products. As well, the introduction of intelligent materials and innovative design approaches in these systems is painfully slow due to heavy relianceon traditional construction and maintenance practices, and the conservative nature of design codes. Feedback on the "state of the health" of constructed systems is practically nonexistent. In the quest for lighter, stronger and corrosion-resistant structures, the replacement of ferrous materials by high-strength fibrous ones is being actively pursued in several countries around the world, both with respect to the design of new structures as well as for the rehabilitation and strengthening of existing ones. In North America, active research in the design of new highway bridges is focused on a number of specialty areas, including the replacement of steel reinforcing bars in concrete deck slabs by randomly distributed low-modulus fibers, and the replacement of steel prestressing cables for concrete components by tendons comprising super-strong fibers. Research is also being conducted on using FRPs to repair and strengthen existing structures. Civil infrastructure systems are generally the most expensive assets in any country, and these systems are deteriorating at an alarming rate. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781402036606
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781402036606_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Uniquely covers application of a broad spectrum of sensors for monitoring of cracks, deformations, loads, and other types of structural anomaliesCivil infrastructure systems are generally the most expensive assets in any country, and these system. Nº de ref. del artículo: 4093447
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Civil infrastructure systems are generally the most expensive assets in any country, and these systems are deteriorating at an alarming rate. In addition, these systems have a long service life in comparison to most other commercial products. As well, the introduction of intelligent materials and innovative design approaches in these systems is painfully slow due to heavy relianceon traditional construction and maintenance practices, and the conservative nature of design codes. Feedback on the 'state of the health' of constructed systems is practically nonexistent. In the quest for lighter, stronger and corrosion-resistant structures, the replacement of ferrous materials by high-strength fibrous ones is being actively pursued in several countries around the world, both with respect to the design of new structures as well as for the rehabilitation and strengthening of existing ones. In North America, active research in the design of new highway bridges is focused on a number of specialty areas, including the replacement of steel reinforcing bars in concrete deck slabs by randomly distributed low-modulus fibers, and the replacement of steel prestressing cables for concrete components by tendons comprising super-strong fibers. Research is also being conducted on using FRPs to repair and strengthen existing structures. 548 pp. Englisch. Nº de ref. del artículo: 9781402036606
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 548. Nº de ref. del artículo: 26320874
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 548 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Nº de ref. del artículo: 7559861
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Civil infrastructure systems are generally the most expensive assets in any country, and these systems are deteriorating at an alarming rate. In addition, these systems have a long service life in comparison to most other commercial products. As well, the introduction of intelligent materials and innovative design approaches in these systems is painfully slow due to heavy relianceon traditional construction and maintenance practices, and the conservative nature of design codes. Feedback on the 'state of the health' of constructed systems is practically nonexistent. In the quest for lighter, stronger and corrosion-resistant structures, the replacement of ferrous materials by high-strength fibrous ones is being actively pursued in several countries around the world, both with respect to the design of new structures as well as for the rehabilitation and strengthening of existing ones. In North America, active research in the design of new highway bridges is focused on a number of specialty areas, including the replacement of steel reinforcing bars in concrete deck slabs by randomly distributed low-modulus fibers, and the replacement of steel prestressing cables for concrete components by tendons comprising super-strong fibers. Research is also being conducted on using FRPs to repair and strengthen existing structures.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 548 pp. Englisch. Nº de ref. del artículo: 9781402036606
Cantidad disponible: 1 disponibles