Boundary value problems for partial differential equations playa crucial role in many areas of physics and the applied sciences. Interesting phenomena are often connected with geometric singularities, for instance, in mechanics. Elliptic operators in corresponding models are then sin gular or degenerate in a typical way. The necessary structures for constructing solutions belong to a particularly beautiful and ambitious part of the analysis. Cracks in a medium are described by hypersurfaces with a boundary. Config urations of that kind belong to the category of spaces (manifolds) with geometric singularities, here with edges. In recent years the analysis on such (in general, stratified) spaces has become a mathematical structure theory with many deep relations with geometry, topology, and mathematical physics. Key words in this connection are operator algebras, index theory, quantisation, and asymptotic analysis. Motivated by Lame’s system with two-sided boundary conditions on a crack we ask the structure of solutions in weighted edge Sobolov spaces and subspaces with discrete and continuous asymptotics. Answers are given for elliptic sys tems in general. We construct parametrices of corresponding edge boundary value problems and obtain elliptic regularity in the respective scales of weighted spaces. The original elliptic operators as well as their parametrices belong to a block matrix algebra of pseudo-differential edge problems with boundary and edge conditions, satisfying analogues of the Shapiro-Lopatinskij condition from standard boundary value problems. Operators are controlled by a hierarchy of principal symbols with interior, boundary, and edge components.
"Sinopsis" puede pertenecer a otra edición de este libro.
Boundary value problems for partial differential equations playa crucial role in many areas of physics and the applied sciences. Interesting phenomena are often connected with geometric singularities, for instance, in mechanics. Elliptic operators in corresponding models are then sin gular or degenerate in a typical way. The necessary structures for constructing solutions belong to a particularly beautiful and ambitious part of the analysis. Cracks in a medium are described by hypersurfaces with a boundary. Config urations of that kind belong to the category of spaces (manifolds) with geometric singularities, here with edges. In recent years the analysis on such (in general, stratified) spaces has become a mathematical structure theory with many deep relations with geometry, topology, and mathematical physics. Key words in this connection are operator algebras, index theory, quantisation, and asymptotic analysis. Motivated by Lame's system with two-sided boundary conditions on a crack we ask the structure of solutions in weighted edge Sobolov spaces and subspaces with discrete and continuous asymptotics. Answers are given for elliptic sys tems in general. We construct parametrices of corresponding edge boundary value problems and obtain elliptic regularity in the respective scales of weighted spaces. The original elliptic operators as well as their parametrices belong to a block matrix algebra of pseudo-differential edge problems with boundary and edge conditions, satisfying analogues of the Shapiro-Lopatinskij condition from standard boundary value problems. Operators are controlled by a hierarchy of principal symbols with interior, boundary, and edge components.
The book studies boundary value problems connected with geometric singularities and models of the crack theory. New and interesting phenomena on the behaviour of solutions (regularity in weighted spaces, asymptotics) are analysed by means of parametrices obtained by inverting corresponding scalar and operator-valued symbols. Compared with other expositions in the field of crack theory and analysis on configurations with singularities the present book systematically develops for the first time an approach in terms of algebras of (pseudo-differential) boundary value problems. The calculus is decomposed into a number of simpler structures, namely boundary value problems (Chapter 1) and edge problems near the crack boundary (Chapter 4). Necessary tools on parameter-dependent cone operators (Chapter 2) and operators on spaces with conical exits to infinity (Chapter 3) are developed as theories of independent interest. The crack theory (Chapter 5) then appears as an application of the edge calculus.
The book is addressed to mathematicians and physicists interested in boundary value problems, geometric singularities, asymptotic analysis, as well as to specialists in the field of crack theory and other singular models.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,28 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,44 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 516. Nº de ref. del artículo: 262175611
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 516 Illus. Nº de ref. del artículo: 5672356
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 516. Nº de ref. del artículo: 182175601
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEOCT25-153436
Cantidad disponible: 1 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-84335
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530141889
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 2343791-n
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781402015243
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. The text studies boundary value problems connected with geometric singularities and models of the crack theory. New and interesting phenomena on the behaviour of solutions (regularity in weighted spaces, asymptotics) are analysed by means of parametrices obtained by inverting corresponding scalar and operator-valued symbols. Compared with other expositions in the field of crack theory and analysis on configurations with singularities the present book systematically develops for the first time an approach in terms of algebras of (pseudo-differential) boundary value problems. The calculus is decomposed into a number of simpler structures, namely boundary value problems and edge problems near the crack boundary. Necessary tools on parameter-dependent cone operators and operators on spaces with conical exits to infinity are developed as theories of independent interest. The crack theory then appears as an application of the edge calculus. The book is addressed to mathematicians and physicists interested in boundary value problems, geometric singularities, asymptotic analysis, as well as to specialists in the field of crack theory and other singular models. The original elliptic operators as well as their parametrices belong to a block matrix algebra of pseudo-differential edge problems with boundary and edge conditions, satisfying analogues of the Shapiro-Lopatinskij condition from standard boundary value problems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781402015243
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781402015243_new
Cantidad disponible: Más de 20 disponibles