 
    How fast and powerful can computers become? Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings? The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing.
There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology.
"Sinopsis" puede pertenecer a otra edición de este libro.
How fast and powerful can computers become? Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings? The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing.
There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: GuthrieBooks, Spring Branch, TX, Estados Unidos de America
Paperback. Condición: Very Good. We are unable to ship to Canada at this time.Ex-library paperback in very nice condition with the usual markings and attachments. Except for library markings, text block clean and unmarked. Tight binding. Nº de ref. del artículo: UTL52757
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of the NATO Advanced Study Institute, held in Pisa, Italy, 24 June-4 July 2002 How fast and powerful can computers become? Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of. Nº de ref. del artículo: 4092414
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781402012129_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -How fast and powerful can computers become Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing. There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology. 556 pp. Englisch. Nº de ref. del artículo: 9781402012129
Cantidad disponible: 2 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Molecular Electronics: Bio-sensors and Bio-computers | L. Barsanti (u. a.) | Taschenbuch | viii | Englisch | 2003 | Springer Netherland | EAN 9781402012129 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 102470323
Cantidad disponible: 5 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -How fast and powerful can computers become Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing.There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 556 pp. Englisch. Nº de ref. del artículo: 9781402012129
Cantidad disponible: 2 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Proceedings of the NATO Advanced Study Institute, held in Pisa, Italy, 24 June-4 July 2002 Editor(s): Barsanti, L.; Evangelista, Valtere; Gualtieri, Paolo; Passarelli, B.; Vestri, S. (CNR Institute of Biophysics, Pisa, Italy). Series: NATO Science Series II. Num Pages: 553 pages, biography. BIC Classification: PSB. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 240 x 160 x 28. Weight in Grams: 1710. . 2003. Softcover reprint of the original 1st ed. 2003. paperback. . . . . Nº de ref. del artículo: V9781402012129
Cantidad disponible: 15 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - How fast and powerful can computers become Will it be possible someday to create artificial brains that have intellectual capabilities comparable to those of human beings The answers to these questions depend to a very great extent on a single factor: how small and dense we can make computer circuits. Very recently, scientists have achieved revolutionary advances that may very well radically change the future of computing. There are significant advantages to using biological molecules in a new computational paradigm, since nature has solved similar problems to those encountered in harnessing organic molecules to perform data manipulation. Biomolecules could be used as photonic devices in holography, as spatial light modulators, in neural network optical computing, as nonlinear optical devices, and as optical memories. Such computers may use a billion times less energy than electronic computers, while storing data in a trillionth of the space, while also being highly parallel. Research projects implemented by national and international groups have produced a large amount of data from multidisciplinary work, ranging from physics and engineering to chemistry and biology. Nº de ref. del artículo: 9781402012129
Cantidad disponible: 1 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. Proceedings of the NATO Advanced Study Institute, held in Pisa, Italy, 24 June-4 July 2002 Editor(s): Barsanti, L.; Evangelista, Valtere; Gualtieri, Paolo; Passarelli, B.; Vestri, S. (CNR Institute of Biophysics, Pisa, Italy). Series: NATO Science Series II. Num Pages: 553 pages, biography. BIC Classification: PSB. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 240 x 160 x 28. Weight in Grams: 1710. . 2003. Softcover reprint of the original 1st ed. 2003. paperback. . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9781402012129
Cantidad disponible: 15 disponibles