Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]).
"Sinopsis" puede pertenecer a otra edición de este libro.
Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]).
This book concentrates on the branching solutions of nonlinear operator equations and the theory of degenerate operator-differential equations especially applicable to algorithmic analysis and nonlinear PDE's in mechanics and mathematical physics.
The authors expound the recent result on the generalized eigen-value problem, the perturbation method, Schmidt's pseudo-inversion for regularization of linear and nonlinear problems in the branching theory and group methods in bifurcation theory. The book covers regular iterative methods in a neighborhood of branch points and the theory of differential-operator equations with a non-invertible operator in the main expression is constructed. Various recent results on theorems of existence are given including asymptotic, approximate and group methods.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 8,05 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoGRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Bluesparrowhawk Books, Chestfield, KENT, Reino Unido
hardcover. Condición: very good. No Jacket. Springer, 2015. Hardback, no dustjacket. Unread copy in very good condition. Sticker to back cover. book. Nº de ref. del artículo: HVY-16957
Cantidad disponible: 1 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-87873
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEOCT25-153292
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530141419
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 947500-n
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. This text concentrates on the branching solutions of nonlinear operator equations and the theory of degenerate operator-differential equations especially applicable to algorithmic analysis and nonlinear PDEs in mechanics and mathematical physics. The authors expound the recent result on the generalized eigen-value problem, the perturbation method, Schmidt's pseudo-inversion for regularization of linear and nonlinear problems in the branching theory and group methods in bifurcation theory. The book covers regular iterative methods in a neighborhood of branch points and the theory of differential-operator equations with a non-invertible operator in the main expression is constructed. Various recent results on theorems of existence are given including asymptotic, approximate and group methods.The reduction of some mathematics, physics and mechanics problems (capillary-gravity surface wave theory, phase transitions theory, Andronov-Hopf bifurcation, boundary-value problems for the Vlasov-Maxwell system, filtration, magnetic insulation) to operator equations gives rich opportunities for creation and application of stated common methods for which existence theorems and the bifurcation of solutions for these applications are investigated. Concentrates on the branching solutions of nonlinear operator equations and the theory of degenerate operator-differential equations especially applicable to algorithmic analysis and nonlinear PDE's in mechanics and mathematical physics. This book covers regular iterative methods in a neighborhood of branch points, and more. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781402009419
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 572. Nº de ref. del artículo: 262178978
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781402009419_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 947500-n
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]). 572 pp. Englisch. Nº de ref. del artículo: 9781402009419
Cantidad disponible: 2 disponibles