Carbon is unique in the range of structures and properties that are displayed by its material forms. The bonds in diamond, within the plane ofgraphite and in the fullerene molecules, C , are the strongest covalent bonds possible. This strong covalent bonding 60 leads to some exceptional intrinsic properties, examples ofwhich are: the greatest Young's modulus (in diamond, within the graphite plane and in single walled nanotubes) the highest room temperature thermal conductivity (in diamond and within the graphite plane) high hole mobility in doped diamond exceptional thermal stability ofthe structure in graphite It is because of the extreme thermal stability that such a wide range of materials is available. Atomic mobilities are low at all but the highest temperatures. Sintering, melting and casting ofcarbon are not feasible processing operations and carbon/graphite components are exclusively produced from the pyrolytic decomposition of organic precursors. The vast majority of engineering carbons have Sp2 type bonding and are related in some way to the structure of graphite. In the c-direction the bonding in graphite is of van der Waals character with the result that graphite is highly anisotropic in its properties and is probably unique in showing both the highest and lowest bond strengths in different directions in the same crystal.
"Sinopsis" puede pertenecer a otra edición de este libro.
Carbon is unique in the range of structures and properties that are displayed by its material forms. The bonds in diamond, within the plane ofgraphite and in the fullerene molecules, C , are the strongest covalent bonds possible. This strong covalent bonding 60 leads to some exceptional intrinsic properties, examples ofwhich are: the greatest Young's modulus (in diamond, within the graphite plane and in single walled nanotubes) the highest room temperature thermal conductivity (in diamond and within the graphite plane) high hole mobility in doped diamond exceptional thermal stability ofthe structure in graphite It is because of the extreme thermal stability that such a wide range of materials is available. Atomic mobilities are low at all but the highest temperatures. Sintering, melting and casting ofcarbon are not feasible processing operations and carbon/graphite components are exclusively produced from the pyrolytic decomposition of organic precursors. The vast majority of engineering carbons have Sp2 type bonding and are related in some way to the structure of graphite. In the c-direction the bonding in graphite is of van der Waals character with the result that graphite is highly anisotropic in its properties and is probably unique in showing both the highest and lowest bond strengths in different directions in the same crystal.
The review of carbon materials here presented regards them as forming a continuous spectrum, varying in crystallinity and nano?, micro? and macro?texture. The structure?property relationships are discussed to examine how they can be controlled during different processing operations. Processing routes are described to see how they might be varied, modified or invented to meet he needs for new applications.
The following key questions are debated:
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 29,24 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Carbon is unique in the range of structures and properties that are displayed by its material forms. The bonds in diamond, within the plane ofgraphite and in the fullerene molecules, C , are the strongest covalent bonds possible. This strong covalent bonding 60 leads to some exceptional intrinsic properties, examples ofwhich are: the greatest Young's modulus (in diamond, within the graphite plane and in single walled nanotubes) the highest room temperature thermal conductivity (in diamond and within the graphite plane) high hole mobility in doped diamond exceptional thermal stability ofthe structure in graphite It is because of the extreme thermal stability that such a wide range of materials is available. Atomic mobilities are low at all but the highest temperatures. Sintering, melting and casting ofcarbon are not feasible processing operations and carbon/graphite components are exclusively produced from the pyrolytic decomposition of organic precursors. The vast majority of engineering carbons have Sp2 type bonding and are related in some way to the structure of graphite. In the c-direction the bonding in graphite is of van der Waals character with the result that graphite is highly anisotropic in its properties and is probably unique in showing both the highest and lowest bond strengths in different directions in the same crystal. 372 pp. Englisch. Nº de ref. del artículo: 9781402000034
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of the NATO Advanced Study Institute, held in Antalya, Turkey, May 10-21, 1998 Carbon is unique in the range of structures and properties that are displayed by its material forms. The bonds in diamond, within the plane ofgraphite and in the. Nº de ref. del artículo: 4091496
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781402000034_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Carbon is unique in the range of structures and properties that are displayed by its material forms. The bonds in diamond, within the plane ofgraphite and in the fullerene molecules, C , are the strongest covalent bonds possible. This strong covalent bonding 60 leads to some exceptional intrinsic properties, examples ofwhich are: the greatest Young's modulus (in diamond, within the graphite plane and in single walled nanotubes) the highest room temperature thermal conductivity (in diamond and within the graphite plane) high hole mobility in doped diamond exceptional thermal stability ofthe structure in graphite It is because of the extreme thermal stability that such a wide range of materials is available. Atomic mobilities are low at all but the highest temperatures. Sintering, melting and casting ofcarbon are not feasible processing operations and carbon/graphite components are exclusively produced from the pyrolytic decomposition of organic precursors. The vast majority of engineering carbons have Sp2 type bonding and are related in some way to the structure of graphite. In the c-direction the bonding in graphite is of van der Waals character with the result that graphite is highly anisotropic in its properties and is probably unique in showing both the highest and lowest bond strengths in different directions in the same crystal. Nº de ref. del artículo: 9781402000034
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Carbon is unique in the range of structures and properties that are displayed by its material forms. The bonds in diamond, within the plane ofgraphite and in the fullerene molecules, C , are the strongest covalent bonds possible. This strong covalent bonding 60 leads to some exceptional intrinsic properties, examples ofwhich are: the greatest Young's modulus (in diamond, within the graphite plane and in single walled nanotubes) the highest room temperature thermal conductivity (in diamond and within the graphite plane) high hole mobility in doped diamond exceptional thermal stability ofthe structure in graphite It is because of the extreme thermal stability that such a wide range of materials is available. Atomic mobilities are low at all but the highest temperatures. Sintering, melting and casting ofcarbon are not feasible processing operations and carbon/graphite components are exclusively produced from the pyrolytic decomposition of organic precursors. The vast majority of engineering carbons have Sp2 type bonding and are related in some way to the structure of graphite. In the c-direction the bonding in graphite is of van der Waals character with the result that graphite is highly anisotropic in its properties and is probably unique in showing both the highest and lowest bond strengths in different directions in the same crystal.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 372 pp. Englisch. Nº de ref. del artículo: 9781402000034
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar2411530140684
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 372. Nº de ref. del artículo: 263109942
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 372 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5819369
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 372. Nº de ref. del artículo: 183109948
Cantidad disponible: 4 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77314020000306
Cantidad disponible: 1 disponibles