Introduces cutting-edge research on machine learning theory and practice, providing an accessible, modern algorithmic toolkit.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ankur Moitra is the Rockwell International Associate Professor of Mathematics at Massachusetts Institute of Technology. He is a principal investigator in the Computer Science and Artificial Intelligence Lab (CSAIL), a core member of the Theory of Computation Group, Machine Learning@MIT, and the Center for Statistics. The aim of his work is to bridge the gap between theoretical computer science and machine learning by developing algorithms with provable guarantees and foundations for reasoning about their behavior. He is a recipient of a Packard Fellowship, a Sloan Fellowship, an National Science Foundation (NSF) CAREER Award, an NSF Computing and Innovation Fellowship and a Hertz Fellowship.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Algorithmic Aspects of Machine Learning. Book. Nº de ref. del artículo: BBS-9781316636008
Cantidad disponible: 5 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9781316636008
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 151 pages. 9.00x6.00x0.50 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __1316636003
Cantidad disponible: 1 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be introduced to important models in machine learning and to the main questions within the field. Machine learning researchers will be introduced to cutting-edge research in an accessible format, and gain familiarity with a modern, algorithmic toolkit, including the method of moments, tensor decompositions and convex programming relaxations. The treatment beyond worst-case analysis is to build a rigorous understanding about the approaches used in practice and to facilitate the discovery of exciting, new ways to solve important long-standing problems. Machine learning is reshaping our everyday life. This book explores the theoretical underpinnings in an accessible way, offering theoretical computer scientists an introduction to important models and problems and offering machine learning researchers a cutting-edge algorithmic toolkit. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781316636008
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 158. Nº de ref. del artículo: 26382498956
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781316636008_new
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 158. Nº de ref. del artículo: 381405011
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 274. Nº de ref. del artículo: C9781316636008
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 158. Nº de ref. del artículo: 18382498950
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 151 pages. 9.00x6.00x0.50 inches. In Stock. Nº de ref. del artículo: x-1316636003
Cantidad disponible: 2 disponibles